1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

ベクトル解析-2階テンソルとベクトルの積

Last updated at Posted at 2018-08-22

2階テンソルとベクトルの積

戻る

  • 2階テンソルの前からベクトルを掛けると、2階テンソルの前とベクトルが同じ場合のみ2階テンソルの後のモノが出てくる。
    2階テンソルの後ろのもの取り出したいなら、2階テンソルの前と同じベクトルを前から掛ける。
\begin{array}{lll}
\hline
 e_x \cdot (e_x \otimes e_x) = e_x, & e_x \cdot (e_x \otimes e_y) = e_y, & e_x \cdot (e_x \otimes e_z) = e_z \\
 e_x \cdot (e_y \otimes e_x) = 0,   & e_x \cdot (e_y \otimes e_y) = 0,   & e_x \cdot (e_y \otimes e_z) = 0 \\
 e_x \cdot (e_z \otimes e_x) = 0,   & e_x \cdot (e_z \otimes e_y) = 0,   & e_x \cdot (e_z \otimes e_z) = 0 \\
\hline
 e_y \cdot (e_x \otimes e_x) = 0,   & e_y \cdot (e_x \otimes e_y) = 0,   & e_y \cdot (e_x \otimes e_z) = 0\\
 e_y \cdot (e_y \otimes e_x) = e_x, & e_y \cdot (e_y \otimes e_y) = e_y, & e_y \cdot (e_y \otimes e_z) = e_z\\
 e_y \cdot (e_z \otimes e_x) = 0,   & e_y \cdot (e_z \otimes e_y) = 0,   & e_y \cdot (e_z \otimes e_z) = 0\\
\hline
 e_z \cdot (e_x \otimes e_x) = 0,   & e_z \cdot (e_x \otimes e_y) = 0,   & e_z \cdot (e_x \otimes e_z) = 0\\
 e_z \cdot (e_y \otimes e_x) = 0,   & e_z \cdot (e_y \otimes e_y) = 0,   & e_z \cdot (e_y \otimes e_z) = 0\\
 e_z \cdot (e_z \otimes e_x) = e_x, & e_z \cdot (e_z \otimes e_y) = e_y, & e_z \cdot (e_z \otimes e_z) = e_z\\
\hline\\
\end{array}
  • 2階テンソルの後からベクトルを掛けると、2階テンソルの後とベクトルが同じ場合のみ2階テンソルの前のモノが出てくる。
    2階テンソルの前のもの取り出したいなら、2階テンソルの後ろと同じベクトルを後ろから掛ける。
\begin{array}{lll}
\hline
 (e_x \otimes e_x) \cdot e_x = e_x, & (e_x \otimes e_y) \cdot e_x = 0,   & (e_x \otimes e_z) \cdot e_x = 0 \\
 (e_y \otimes e_x) \cdot e_x = e_y, & (e_y \otimes e_y) \cdot e_x = 0,   & (e_y \otimes e_z) \cdot e_x = 0 \\
 (e_z \otimes e_x) \cdot e_x = e_z, & (e_z \otimes e_y) \cdot e_x = 0,   & (e_z \otimes e_z) \cdot e_x = 0 \\
\hline
 (e_x \otimes e_x) \cdot e_y = 0,   & (e_x \otimes e_y) \cdot e_y = e_x, & (e_x \otimes e_z) \cdot e_y = 0 \\
 (e_y \otimes e_x) \cdot e_y = 0,   & (e_y \otimes e_y) \cdot e_y = e_y, & (e_y \otimes e_z) \cdot e_y = 0 \\
 (e_z \otimes e_x) \cdot e_y = 0,   & (e_z \otimes e_y) \cdot e_y = e_z, & (e_z \otimes e_z) \cdot e_y = 0 \\
\hline
 (e_x \otimes e_x) \cdot e_z = 0,   & (e_x \otimes e_y) \cdot e_z = 0,   & (e_x \otimes e_z) \cdot e_z = e_x \\
 (e_y \otimes e_x) \cdot e_z = 0,   & (e_y \otimes e_y) \cdot e_z = 0,   & (e_y \otimes e_z) \cdot e_z = e_y \\
 (e_z \otimes e_x) \cdot e_z = 0,   & (e_z \otimes e_y) \cdot e_z = 0,   & (e_z \otimes e_z) \cdot e_z = e_z \\
\hline
\end{array}
1
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?