0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

マイナンバーカード交付状況のExcelファイルをデータラングリング(9月)

Last updated at Posted at 2020-10-03

はじめに

総務省のマイナンバー制度とマイナンバーカード

  • マイナンバーカード交付状況(令和2年9月1日現在)のExcel形式

マイナンバーカード普及状況ダッシュボードのCSV形式に変換

※令和2年8月1日と令和2年9月1日Excelファイルはフォーマットが違うため令和2年9月1日のみ対応

  • 基準日が8月は各表の最後、9月は列名の中(PDFと同じ)
  • 各表の区切り

マイナンバーカード交付状況(令和2年8月1日現在)はこちら
https://qiita.com/barobaro/items/05efbb6aa2c759c80ff0

  • 9月は基準日が列名の中にありそれぞれ抽出
  • 各表の区切りは列名の2・3列目に時点があるのでそれを基準に抽出

202009.png

データラングリング

import csv
import datetime
import re

import pandas as pd


def wareki2date(s):

    m = re.search("(H|R|平成|令和)([0-9元]{1,2})[.年]([0-9]{1,2})[.月]([0-9]{1,2})日?", s)

    year, month, day = [1 if i == "" else int(i) for i in m.group(2, 3, 4)]

    if m.group(1) in ["平成", "H"]:
        year += 1988
    elif m.group(1) in ["令和", "R"]:
        year += 2018

    return datetime.date(year, month, day).strftime("%Y/%m/%d")


def df_conv(df, col_name, population_date, delivery_date):

    df.set_axis(col_name, axis=1, inplace=True)

    df["人口算出基準日"] = population_date
    df["交付枚数算出基準日"] = delivery_date
    df.insert(0, "算出基準日", delivery_date)

    return df


def my_round(s):
    return int(s * 1000 + 0.5) / 10


df = pd.read_excel(
    "https://www.soumu.go.jp/main_content/000707709.xlsx", sheet_name=1, header=None
)

df.dropna(thresh=3, inplace=True)

dfg = df.groupby(
    (df[1].str.contains("時点", na=False) | df[2].str.contains("時点", na=False)).cumsum()
)

dfs = [g.dropna(how="all", axis=1).reset_index(drop=True) for _, g in dfg]

print(len(dfs))

# 団体区分別

population_date = wareki2date(dfs[0].iat[0, 1])
delivery_date = wareki2date(dfs[0].iat[0, 2])

df0 = df_conv(
    dfs[0].iloc[1:].reset_index(drop=True),
    ["区分", "人口", "交付枚数", "人口に対する交付枚数率"],
    population_date,
    delivery_date,
)

df0["人口に対する交付枚数率"] = df0["人口に対する交付枚数率"].apply(my_round)

df0.to_csv(
    "summary_by_types.csv",
    index=False,
    quoting=csv.QUOTE_NONNUMERIC,
    encoding="utf_8_sig",
)

df0

# 都道府県一覧

population_date = wareki2date(dfs[3].iat[0, 1])
delivery_date = wareki2date(dfs[3].iat[0, 2])

df3 = df_conv(
    dfs[3].iloc[1:].reset_index(drop=True),
    ["都道府県名", "総数(人口)", "交付枚数", "人口に対する交付枚数率"],
    population_date,
    delivery_date,
)

df3["人口に対する交付枚数率"] = df3["人口に対する交付枚数率"].apply(my_round)

df3.to_csv(
    "all_prefectures.csv",
    index=False,
    quoting=csv.QUOTE_NONNUMERIC,
    encoding="utf_8_sig",
)

df3

# 男女・年齢別

population_date = wareki2date(dfs[4].iat[0, 1])
delivery_date = wareki2date(dfs[4].iat[0, 4])

df4 = df_conv(
    dfs[4].iloc[2:].reset_index(drop=True),
    [
        "年齢",
        "人口(男)",
        "人口(女)",
        "人口(計)",
        "交付件数(男)",
        "交付件数(女)",
        "交付件数(計)",
        "交付率(男)",
        "交付率(女)",
        "交付率(計)",
        "全体に対する交付件数割合(男)",
        "全体に対する交付件数割合(女)",
        "全体に対する交付件数割合(計)",
    ],
    population_date,
    delivery_date,
)

df4["交付率(男)"] = df4["交付率(男)"].apply(my_round)
df4["交付率(女)"] = df4["交付率(女)"].apply(my_round)
df4["交付率(計)"] = df4["交付率(計)"].apply(my_round)
df4["全体に対する交付件数割合(男)"] = df4["全体に対する交付件数割合(男)"].apply(my_round)
df4["全体に対する交付件数割合(女)"] = df4["全体に対する交付件数割合(女)"].apply(my_round)
df4["全体に対する交付件数割合(計)"] = df4["全体に対する交付件数割合(計)"].apply(my_round)

df4.to_csv(
    "demographics.csv", index=False, quoting=csv.QUOTE_NONNUMERIC, encoding="utf_8_sig",
)

df4

# 市区町村別

population_date = wareki2date(dfs[5].iat[0, 2])
delivery_date = wareki2date(dfs[5].iat[0, 3])

df5 = df_conv(
    dfs[5].iloc[2:].reset_index(drop=True),
    ["都道府県名", "市区町村名", "総数(人口)", "交付枚数", "人口に対する交付枚数率"],
    population_date,
    delivery_date,
)

df5["人口に対する交付枚数率"] = df5["人口に対する交付枚数率"].apply(my_round)

df5["市区町村名"] = df5["市区町村名"].replace(r"\s", "", regex=True)
df5["市区町村名"] = df5["市区町村名"].mask(df5["都道府県名"] + df5["市区町村名"] == "兵庫県篠山市", "丹波篠山市")
df5["市区町村名"] = df5["市区町村名"].mask(df5["都道府県名"] + df5["市区町村名"] == "高知県高岡郡梼原町", "高岡郡檮原町")
df5["市区町村名"] = df5["市区町村名"].mask(df5["都道府県名"] + df5["市区町村名"] == "福岡県糟屋郡須惠町", "糟屋郡須恵町")

if pd.Timestamp(df5.iloc[0]["算出基準日"]) < datetime.date(2018, 10, 1):
    df5["市区町村名"] = df5["市区町村名"].mask(
        df5["都道府県名"] + df5["市区町村名"] == "福岡県那珂川市", "筑紫郡那珂川町"
    )
else:
    df5["市区町村名"] = df5["市区町村名"].mask(
        df5["都道府県名"] + df5["市区町村名"] == "福岡県筑紫郡那珂川町", "那珂川市"
    )

df_code = pd.read_csv(
    "https://docs.google.com/spreadsheets/d/e/2PACX-1vSseDxB5f3nS-YQ1NOkuFKZ7rTNfPLHqTKaSag-qaK25EWLcSL0klbFBZm1b6JDKGtHTk6iMUxsXpxt/pub?gid=0&single=true&output=csv",
    dtype={"団体コード": int, "都道府県名": str, "郡名": str, "市区町村名": str},
)

df_code["市区町村名"] = df_code["郡名"].fillna("") + df_code["市区町村名"]
df_code.drop("郡名", axis=1, inplace=True)

df5 = pd.merge(df5, df_code, on=["都道府県名", "市区町村名"], how="left")
df5["団体コード"] = df5["団体コード"].astype("Int64")

df5.to_csv(
    "all_localgovs.csv",
    index=False,
    quoting=csv.QUOTE_NONNUMERIC,
    encoding="utf_8_sig",
)

df5

参考

0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?