2
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

『経済・ファイナンスデータの計量時系列分析』章末問題をRで解く-第6章見せかけの回帰と共和分-

Last updated at Posted at 2017-01-29

『経済・ファイナンスデータの計量時系列分析』

の章末問題で「コンピュータを用いて」とあるものをRで解いています。

6.4

msci<-read.table("msci_day.txt", header=T)
msci.log<-log(msci[,2:8])
dim(msci.log)
[1] 1391    7

(1)

set.seed(1)
wn<-rnorm(1391)
hist(wn)

Rplot13.png

(2)

out<-data.frame(matrix(1:21,nrow=7,ncol=3))
for (i in 1:7) {
  tmp.p<-lm(msci.log[,i]~wn)
  tmp.p.beta<-tmp.p$coefficients[2]
  tmp.f.stat<-summary(tmp.p)$fstatistic
  tmp.p.p.value<-1-pf(tmp.f.stat["value"],tmp.f.stat["numdf"],tmp.f.stat["dendf"])
  tmp.p.adj.r.squared<-summary(tmp.p)$adj.r.squared
  out[i,]<-data.frame(matrix(c(tmp.p.beta, tmp.p.p.value, tmp.p.adj.r.squared), nrow=1))
}
colnames(out)<-c("推定値β^", "p値", "決定係数")
rownames(out)<-colnames(msci.log)
out
   推定値β^       p値    決定係数
ca  -0.005197388 0.5748192 -0.0004931680
fr  -0.003196312 0.6706261 -0.0005895938
ge  -0.003614680 0.6928374 -0.0006074941
it  -0.003411967 0.5995188 -0.0005212435
jp  -0.001184826 0.8467281 -0.0006930146
uk  -0.002621959 0.6630235 -0.0005831074
us  -0.002241276 0.5714044 -0.0004890948

調整済み決定係数なので、負の値になっているが実質ほぼ0。

(3)

rw<-cumsum(wn)
plot(rw, type="l")

Rplot14.png

(4)

out<-data.frame(matrix(1:21,nrow=7,ncol=3))
for (i in 1:7) {
  tmp.p<-lm(msci.log[,i]~rw)
  tmp.p.beta<-tmp.p$coefficients[2]
  tmp.f.stat<-summary(tmp.p)$fstatistic
  tmp.p.p.value<-1-pf(tmp.f.stat["value"],tmp.f.stat["numdf"],tmp.f.stat["dendf"])
  tmp.p.adj.r.squared<-summary(tmp.p)$adj.r.squared
  out[i,]<-data.frame(matrix(c(tmp.p.beta, tmp.p.p.value, tmp.p.adj.r.squared), nrow=1))
}
colnames(out)<-c("推定値β^", "p値", "決定係数")
rownames(out)<-colnames(msci.log)
out
   推定値β^       p値    決定係数
ca -0.022671268   0        0.6988062
fr -0.017622486   0        0.6416288
ge -0.021094733   0        0.6201344
it -0.014705891   0        0.5976875
jp -0.013653738   0        0.5790067
uk -0.013868895   0        0.6199455
us -0.008966661   0        0.5982770

見せかけの回帰の現象が見られる。
テキストとホワイトノイズの値が異なるので値は一致しないが、p125の表6.1と同等にp値が0で決定係数が高めに出ている。

(5)

for (i in 1:1) {
  rw_1<-0
  y_1<-0
  rw_1[1]<-0
  y_1[1]<-0
  for (j in 2:1391) {
    rw_1[j]<-rw[j-1]
    y_1[j]<-msci.log[j-1,i]
  }
  tmp.p<-lm(msci.log[,i]~rw+rw_1+y_1)
  tmp.p.beta<-tmp.p$coefficients[2]
  tmp.f.stat<-summary(tmp.p)$fstatistic
  tmp.p.p.value<-1-pf(tmp.f.stat["value"],tmp.f.stat["numdf"],tmp.f.stat["dendf"])
  tmp.p.adj.r.squared<-summary(tmp.p)$adj.r.squared
  out[i,]<-data.frame(matrix(c(tmp.p.beta, tmp.p.p.value, tmp.p.adj.r.squared), nrow=1))
}
colnames(out)<-c("推定値β^", "p値", "決定係数")
rownames(out)<-colnames(msci.log)
out
   推定値β^       p値    決定係数
ca -0.007613280   0        0.8812688
fr -0.017622486   0        0.6416288
ge -0.021094733   0        0.6201344
it -0.014705891   0        0.5976875
jp -0.013653738   0        0.5790067
uk -0.013868895   0        0.6199455
us -0.008966661   0        0.5982770

見せかけの回帰の現象が見られる。

6.5

ppp<-read.table("ppp.txt", header=T)

(1)

lcpijp<-ts(log(ppp$cpijp),start=c(1974,1),frequency=12)
lcpius<-ts(log(ppp$cpius),start=c(1974,1),frequency=12)
lexjp<-ts(log(ppp$exjp),start=c(1974,1),frequency=12)
par(mfrow=c(3,2))
par(mar=c(2,4,1,1))
ts.plot(ts(ppp$cpijp,start=c(1974,1),frequency=12),ylab="cpijp")
ts.plot(lcpijp,ylab="log(cpijp)")
ts.plot(ts(ppp$cpius,start=c(1974,1),frequency=12),ylab="cpius")
ts.plot(lcpius,ylab="log(cpius)")
ts.plot(ts(ppp$exjp,start=c(1974,1),frequency=12),ylab="exjp")
ts.plot(lexjp,ylab="log(exjp)")

Rplot15.png

(2)

library(tseries)
adf.test(lcpijp)
adf.test(lcpijp, alternative = "explosive")
adf.test(lcpius)
adf.test(lcpius, alternative = "explosive")
adf.test(lexjp)
adf.test(lexjp, alternative = "explosive")
> adf.test(lcpijp)

	Augmented Dickey-Fuller Test

data:  lcpijp
Dickey-Fuller = -4.0654, Lag order = 7, p-value = 0.01
alternative hypothesis: stationary

Warning message:
In adf.test(lcpijp) : p-value smaller than printed p-value
> adf.test(lcpijp, alternative = "explosive")

	Augmented Dickey-Fuller Test

data:  lcpijp
Dickey-Fuller = -4.0654, Lag order = 7, p-value = 0.99
alternative hypothesis: explosive

Warning message:
In adf.test(lcpijp, alternative = "explosive") :
  p-value smaller than printed p-value
> adf.test(lcpius)

	Augmented Dickey-Fuller Test

data:  lcpius
Dickey-Fuller = -2.4815, Lag order = 7, p-value =
0.3739
alternative hypothesis: stationary

> adf.test(lcpius, alternative = "explosive")

	Augmented Dickey-Fuller Test

data:  lcpius
Dickey-Fuller = -2.4815, Lag order = 7, p-value =
0.6261
alternative hypothesis: explosive

> adf.test(lexjp)

	Augmented Dickey-Fuller Test

data:  lexjp
Dickey-Fuller = -1.6156, Lag order = 7, p-value =
0.7396
alternative hypothesis: stationary

> adf.test(lexjp, alternative = "explosive")

	Augmented Dickey-Fuller Test

data:  lexjp
Dickey-Fuller = -1.6156, Lag order = 7, p-value =
0.2604
alternative hypothesis: explosive

(3)

lrexjp<-lcpijp-lcpius-lexjp
par(mar=c(2,4,1,4))
plot(lrexjp, ylab="log(rexjp)")

Rplot16.png

(4)

PPP仮説は
$$
lcpijp \approx lexjp + lcpius
$$
であるから
$$
lcpijp - lcpius - lexjp = lrexjp \approx 0
$$
よりlrexjpが0に収束することを示唆している。

(5)

adf.test(lrexjp)
adf.test(lrexjp, alternative = "explosive")
adf.test(diff(lrexjp))
> adf.test(lrexjp)

	Augmented Dickey-Fuller Test

data:  lrexjp
Dickey-Fuller = -1.3335, Lag order = 7, p-value =
0.8587
alternative hypothesis: stationary

> adf.test(lrexjp, alternative = "explosive")

	Augmented Dickey-Fuller Test

data:  lrexjp
Dickey-Fuller = -1.3335, Lag order = 7, p-value =
0.1413
alternative hypothesis: explosive

> adf.test(diff(lrexjp))

	Augmented Dickey-Fuller Test

data:  diff(lrexjp)
Dickey-Fuller = -6.7109, Lag order = 7, p-value = 0.01
alternative hypothesis: stationary

Warning message:
In adf.test(diff(lrexjp)) : p-value smaller than printed p-value

より、単位根がある。このためlrexjpの値が収束しないので、PPP仮説を支持していない。

(6)

library(urca)
lrexjp.df<-data.frame(lcpijp, -lcpius, -lexjp)
lrexjp.vecm<-ca.jo(lrexjp.df, ecdet="none", type="eigen", K=6, spec="longrun", season=NULL)
summary(lrexjp.vecm)
> summary(lrexjp.vecm)

###################### 
# Johansen-Procedure # 
###################### 

Test type: maximal eigenvalue statistic (lambda max) , with linear trend 

Eigenvalues (lambda):
[1] 0.158408638 0.032735262 0.002925689

Values of teststatistic and critical values of test:

          test 10pct  5pct  1pct
r <= 2 |  1.14  6.50  8.18 11.65
r <= 1 | 12.98 12.91 14.90 19.19
r = 0  | 67.26 18.90 21.07 25.75

Eigenvectors, normalised to first column:
(These are the cointegration relations)

              lcpijp.l6 X.lcpius.l6 X.lexjp.l6
lcpijp.l6    1.00000000   1.0000000  1.0000000
X.lcpius.l6  0.02892562   0.2519313  0.7927706
X.lexjp.l6  -0.07537271  -0.3823289  0.1300192

Weights W:
(This is the loading matrix)

              lcpijp.l6 X.lcpius.l6    X.lexjp.l6
lcpijp.d   -0.021872635 0.002756738 -0.0007592322
X.lcpius.d  0.014398742 0.008619883 -0.0038549536
X.lexjp.d   0.002801142 0.061199460  0.0184638162

r = 1
r+1=2個の共和分関係が存在する。よってPPP仮説を支持する。

(7)

lcpica<-ts(log(ppp$cpica),start=c(1974,1),frequency=12)
lcpiuk<-ts(log(ppp$cpiuk),start=c(1974,1),frequency=12)
lexca<-ts(log(ppp$exca),start=c(1974,1),frequency=12)
lexuk<-ts(log(ppp$exuk),start=c(1974,1),frequency=12)

lrexca.df<-data.frame(lcpica, -lcpius, -lexca)
lrexca.vecm<-ca.jo(lrexca.df, ecdet="none", type="eigen", K=6, spec="longrun", season=NULL)
summary(lrexca.vecm)
###################### 
# Johansen-Procedure # 
###################### 

Test type: maximal eigenvalue statistic (lambda max) , with linear trend 

Eigenvalues (lambda):
[1] 0.104204155 0.016269511 0.002260424

Values of teststatistic and critical values of test:

          test 10pct  5pct  1pct
r <= 2 |  0.88  6.50  8.18 11.65
r <= 1 |  6.40 12.91 14.90 19.19
r = 0  | 42.92 18.90 21.07 25.75

Eigenvectors, normalised to first column:
(These are the cointegration relations)

             lcpica.l6 X.lcpius.l6 X.lexca.l6
lcpica.l6   1.00000000   1.0000000   1.000000
X.lcpius.l6 0.97756101   1.2966193   2.087184
X.lexca.l6  0.04893602   0.6192151  -1.629409

Weights W:
(This is the loading matrix)

              lcpica.l6  X.lcpius.l6    X.lexca.l6
lcpica.d   -0.013164472 -0.001479385  0.0003232371
X.lcpius.d  0.009339536 -0.007286482 -0.0011414028
X.lexca.d   0.032099791 -0.011930871  0.0031450132
lrexuk.df<-data.frame(lcpiuk, -lcpius, -lexuk)
lrexuk.vecm<-ca.jo(lrexuk.df, ecdet="none", type="eigen", K=6, spec="longrun", season=NULL)
summary(lrexuk.vecm)
###################### 
# Johansen-Procedure # 
###################### 

Test type: maximal eigenvalue statistic (lambda max) , with linear trend 

Eigenvalues (lambda):
[1] 0.128672334 0.030943227 0.007768275

Values of teststatistic and critical values of test:

          test 10pct  5pct  1pct
r <= 2 |  3.04  6.50  8.18 11.65
r <= 1 | 12.26 12.91 14.90 19.19
r = 0  | 53.72 18.90 21.07 25.75

Eigenvectors, normalised to first column:
(These are the cointegration relations)

             lcpiuk.l6 X.lcpius.l6 X.lexuk.l6
lcpiuk.l6    1.0000000   1.0000000   1.000000
X.lcpius.l6  0.5757486   1.3613908   1.945102
X.lexuk.l6  -2.0586854   0.9541808  -0.105148

Weights W:
(This is the loading matrix)

              lcpiuk.l6  X.lcpius.l6   X.lexuk.l6
lcpiuk.d   -0.005272950 -0.003607554  0.001152957
X.lcpius.d  0.002705188 -0.006229943 -0.003849241
X.lexuk.d   0.011352610 -0.017602665  0.026309049

r = 1
r+1=2個の共和分関係が存在する。よってPPP仮説を支持する。

次は 『経済・ファイナンスデータの計量時系列分析』章末問題をRで解く-第7章GARCHモデル-

2
3
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
2
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?