3
5

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

『経済・ファイナンスデータの計量時系列分析』章末問題をRで解く-第7章GARCHモデル-

Posted at

『経済・ファイナンスデータの計量時系列分析』

の章末問題で「コンピュータを用いて」とあるものをRで解いています。

7.4

(1)

  • 大きな自己相関はみられない
msci_day<-read.table("msci_day.txt",header=T)
par(mfrow=c(2,1))
us<-msci_day$us
plot(us, type="l")
dlus<-diff(log(us))
plot(dlus, type="l")

acf(dlus)
pacf(dlus)

Rplot17.png
Rplot18.png

(2)

  • 大きな自己相関がみられる
acf(dlus^2)
pacf(dlus^2)

Rplot19.png

(3)

# fGarch
library(fGarch)

dlus.garch<-garchFit(formula=~arma(1,0)+garch(1,1), data=dlus, trace=F)
summary(dlus.garch)
Title:
 GARCH Modelling 

Call:
 garchFit(formula = ~arma(1, 0) + garch(1, 1), data = dlus, trace = F) 

Mean and Variance Equation:
 data ~ arma(1, 0) + garch(1, 1)
<environment: 0x0000000015605008>
 [data = dlus]

Conditional Distribution:
 norm 

Coefficient(s):
         mu          ar1        omega       alpha1  
 4.6782e-04  -7.8543e-02   1.0128e-06   5.0598e-02  
      beta1  
 9.3444e-01  

Std. Errors:
 based on Hessian 

Error Analysis:
         Estimate  Std. Error  t value Pr(>|t|)    
mu      4.678e-04   1.961e-04    2.386  0.01704 *  
ar1    -7.854e-02   2.795e-02   -2.810  0.00495 ** 
omega   1.013e-06   3.489e-07    2.903  0.00370 ** 
alpha1  5.060e-02   9.937e-03    5.092 3.55e-07 ***
beta1   9.344e-01   1.314e-02   71.103  < 2e-16 ***
---
Signif. codes:  0 *** 0.001 ** 0.01 * 0.05 . 0.1   1

Log Likelihood:
 4756.516    normalized:  3.421954 

Description:
 Sun Jan 29 10:00:51 2017 by user: aoki 


Standardised Residuals Tests:
                                Statistic p-Value     
 Jarque-Bera Test   R    Chi^2  180.9516  0           
 Shapiro-Wilk Test  R    W      0.9840602 2.999756e-11
 Ljung-Box Test     R    Q(10)  10.05805  0.4354152   
 Ljung-Box Test     R    Q(15)  14.6652   0.4757913   
 Ljung-Box Test     R    Q(20)  17.64631  0.6106947   
 Ljung-Box Test     R^2  Q(10)  13.96237  0.174715    
 Ljung-Box Test     R^2  Q(15)  16.33594  0.3600828   
 Ljung-Box Test     R^2  Q(20)  17.08671  0.6473361   
 LM Arch Test       R    TR^2   15.48142  0.2161583   

Information Criterion Statistics:
      AIC       BIC       SIC      HQIC 
-6.836714 -6.817875 -6.836740 -6.829669
# rugarch
library(rugarch)

dlus.spec<-ugarchspec(variance.model=list(model="sGARCH", garchOrder=c(1,1)), mean.model=list(armaOrder=c(1,0), include.mean=T))
dlus.garch<-ugarchfit(data=dlus, spec=dlus.spec)
dlus.garch
> dlus.garch

*---------------------------------*
*          GARCH Model Fit        *
*---------------------------------*

Conditional Variance Dynamics 	
-----------------------------------
GARCH Model	: sGARCH(1,1)
Mean Model	: ARFIMA(1,0,0)
Distribution	: norm 

Optimal Parameters
------------------------------------
        Estimate  Std. Error  t value Pr(>|t|)
mu      0.000441    0.000183  2.41849 0.015585
ar1    -0.079111    0.028059 -2.81940 0.004811
omega   0.000001    0.000002  0.59728 0.550317
alpha1  0.049525    0.020256  2.44490 0.014489
beta1   0.935539    0.023125 40.45591 0.000000

Robust Standard Errors:
        Estimate  Std. Error   t value Pr(>|t|)
mu      0.000441    0.000355  1.243796 0.213575
ar1    -0.079111    0.027009 -2.929059 0.003400
omega   0.000001    0.000030  0.032807 0.973829
alpha1  0.049525    0.330906  0.149664 0.881029
beta1   0.935539    0.390027  2.398653 0.016455

LogLikelihood : 4751.628 

*---------------------------------*
*          GARCH Model Fit        *
*---------------------------------*

Conditional Variance Dynamics 	
-----------------------------------
GARCH Model	: sGARCH(1,1)
Mean Model	: ARFIMA(1,0,0)
Distribution	: norm 

Optimal Parameters
------------------------------------
        Estimate  Std. Error  t value Pr(>|t|)
mu      0.000441    0.000183  2.41849 0.015585
ar1    -0.079111    0.028059 -2.81940 0.004811
omega   0.000001    0.000002  0.59728 0.550317
alpha1  0.049525    0.020256  2.44490 0.014489
beta1   0.935539    0.023125 40.45591 0.000000

Robust Standard Errors:
        Estimate  Std. Error   t value Pr(>|t|)
mu      0.000441    0.000355  1.243796 0.213575
ar1    -0.079111    0.027009 -2.929059 0.003400
omega   0.000001    0.000030  0.032807 0.973829
alpha1  0.049525    0.330906  0.149664 0.881029
beta1   0.935539    0.390027  2.398653 0.016455

LogLikelihood : 4751.628 

Information Criteria
------------------------------------
                    
Akaike       -6.8297
Bayes        -6.8108
Shibata      -6.8297
Hannan-Quinn -6.8226

Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
                        statistic p-value
Lag[1]                   0.001242  0.9719
Lag[2*(p+q)+(p+q)-1][2]  0.385088  0.9856
Lag[4*(p+q)+(p+q)-1][5]  1.217200  0.9092
d.o.f=1
H0 : No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
                        statistic p-value
Lag[1]                      3.730 0.05345
Lag[2*(p+q)+(p+q)-1][5]     4.288 0.22027
Lag[4*(p+q)+(p+q)-1][9]     4.932 0.43945
d.o.f=2

Weighted ARCH LM Tests
------------------------------------

Information Criteria
------------------------------------
                    
Akaike       -6.8297
Bayes        -6.8108
Shibata      -6.8297
Hannan-Quinn -6.8226

Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
                        statistic p-value
Lag[1]                   0.001242  0.9719
Lag[2*(p+q)+(p+q)-1][2]  0.385088  0.9856
Lag[4*(p+q)+(p+q)-1][5]  1.217200  0.9092
d.o.f=1
H0 : No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
                        statistic p-value
Lag[1]                      3.730 0.05345
Lag[2*(p+q)+(p+q)-1][5]     4.288 0.22027
Lag[4*(p+q)+(p+q)-1][9]     4.932 0.43945
d.o.f=2

Weighted ARCH LM Tests
------------------------------------
            Statistic Shape Scale P-Value
ARCH Lag[3]   0.02518 0.500 2.000  0.8739
ARCH Lag[5]   1.14491 1.440 1.667  0.6905
ARCH Lag[7]   1.28023 2.315 1.543  0.8642
            Statistic Shape Scale P-Value
ARCH Lag[3]   0.02518 0.500 2.000  0.8739
ARCH Lag[5]   1.14491 1.440 1.667  0.6905
ARCH Lag[7]   1.28023 2.315 1.543  0.8642

Nyblom stability test
------------------------------------
Joint Statistic:  162.9923
Individual Statistics:               
mu      0.04725
ar1     0.15181
omega  16.76474
alpha1  0.32187
beta1   0.21276

Asymptotic Critical Values (10% 5% 1%)
Joint Statistic:     	 1.28 1.47 1.88
Individual Statistic:	 0.35 0.47 0.75

Sign Bias Test
------------------------------------

Nyblom stability test
------------------------------------
Joint Statistic:  162.9923
Individual Statistics:               
mu      0.04725
ar1     0.15181
omega  16.76474
alpha1  0.32187
beta1   0.21276

Asymptotic Critical Values (10% 5% 1%)
Joint Statistic:     	 1.28 1.47 1.88
Individual Statistic:	 0.35 0.47 0.75

Sign Bias Test
------------------------------------
                   t-value    prob sig
Sign Bias            1.097 0.27267    
Negative Sign Bias   1.033 0.30178    
Positive Sign Bias   1.795 0.07293   *
Joint Effect         8.666 0.03408  **


Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
  group statistic p-value(g-1)
1    20     88.73    5.556e-11
2    30    113.06    7.184e-12
3    40    110.26    1.005e-08
4    50    140.36    9.542e-11


Elapsed time : 1.15019 

                   t-value    prob sig
Sign Bias            1.097 0.27267    
Negative Sign Bias   1.033 0.30178    
Positive Sign Bias   1.795 0.07293   *
Joint Effect         8.666 0.03408  **


Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
  group statistic p-value(g-1)
1    20     88.73    5.556e-11
2    30    113.06    7.184e-12
3    40    110.26    1.005e-08
4    50    140.36    9.542e-11


Elapsed time : 1.15019 
  • fGarch
    mu = 4.678e-04
    ar1 =-7.854e-02
    omega = 1.013e-06
    alpha1= 5.060e-02
    beta1 = 9.344e-01

  • rugarch
    mu = 0.000441
    ar1 =-0.079111
    omega = 0.000001
    alpha1= 0.049525
    beta1 = 0.935539

(4)

dlus.spec<-ugarchspec(variance.model=list(model="gjrGARCH", garchOrder=c(1,1)), mean.model=list(armaOrder=c(1,0), include.mean=T))
dlus.gjr<-ugarchfit(data=dlus, spec=dlus.spec)
dlus.gjr
> dlus.gjr<-ugarchfit(data=dlus, spec=dlus.spec)
> dlus.gjr

*---------------------------------*
*          GARCH Model Fit        *
*---------------------------------*

Conditional Variance Dynamics 	
-----------------------------------
GARCH Model	: gjrGARCH(1,1)
Mean Model	: ARFIMA(1,0,0)
Distribution	: norm 

Optimal Parameters
------------------------------------
        Estimate  Std. Error   t value Pr(>|t|)
mu      0.000245    0.000183  1.340180 0.180187
ar1    -0.074942    0.027716 -2.703945 0.006852
omega   0.000001    0.000001  0.879222 0.379281
alpha1  0.000000    0.009631  0.000018 0.999986
beta1   0.943001    0.013853 68.069707 0.000000
gamma1  0.082897    0.019106  4.338717 0.000014

Robust Standard Errors:
        Estimate  Std. Error   t value Pr(>|t|)
mu      0.000245    0.000157  1.559756 0.118818
ar1    -0.074942    0.023622 -3.172597 0.001511
omega   0.000001    0.000015  0.063334 0.949501
alpha1  0.000000    0.048887  0.000004 0.999997
beta1   0.943001    0.155045  6.082123 0.000000
gamma1  0.082897    0.149275  0.555334 0.578666

LogLikelihood : 4768.721 

Information Criteria
------------------------------------
                    
Akaike       -6.8528
Bayes        -6.8302
Shibata      -6.8529
Hannan-Quinn -6.8444

Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
> dlus.gjr

*---------------------------------*
*          GARCH Model Fit        *
*---------------------------------*

Conditional Variance Dynamics 	
-----------------------------------
GARCH Model	: gjrGARCH(1,1)
Mean Model	: ARFIMA(1,0,0)
Distribution	: norm 

Optimal Parameters
------------------------------------
        Estimate  Std. Error   t value Pr(>|t|)
mu      0.000245    0.000183  1.340180 0.180187
ar1    -0.074942    0.027716 -2.703945 0.006852
omega   0.000001    0.000001  0.879222 0.379281
alpha1  0.000000    0.009631  0.000018 0.999986
beta1   0.943001    0.013853 68.069707 0.000000
gamma1  0.082897    0.019106  4.338717 0.000014

Robust Standard Errors:
        Estimate  Std. Error   t value Pr(>|t|)
mu      0.000245    0.000157  1.559756 0.118818
ar1    -0.074942    0.023622 -3.172597 0.001511
omega   0.000001    0.000015  0.063334 0.949501
alpha1  0.000000    0.048887  0.000004 0.999997
beta1   0.943001    0.155045  6.082123 0.000000
gamma1  0.082897    0.149275  0.555334 0.578666

LogLikelihood : 4768.721 

Information Criteria
------------------------------------
                    
Akaike       -6.8528
Bayes        -6.8302
Shibata      -6.8529
Hannan-Quinn -6.8444

Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
                        statistic p-value
Lag[1]                   0.003938  0.9500
Lag[2*(p+q)+(p+q)-1][2]  0.453423  0.9744
Lag[4*(p+q)+(p+q)-1][5]  1.435205  0.8622
d.o.f=1
H0 : No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
                        statistic p-value
Lag[1]                      4.918 0.02658
Lag[2*(p+q)+(p+q)-1][5]     5.404 0.12381
Lag[4*(p+q)+(p+q)-1][9]     6.045 0.29308
d.o.f=2

Weighted ARCH LM Tests
------------------------------------
                        statistic p-value
Lag[1]                   0.003938  0.9500
Lag[2*(p+q)+(p+q)-1][2]  0.453423  0.9744
Lag[4*(p+q)+(p+q)-1][5]  1.435205  0.8622
d.o.f=1
H0 : No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
                        statistic p-value
Lag[1]                      4.918 0.02658
Lag[2*(p+q)+(p+q)-1][5]     5.404 0.12381
Lag[4*(p+q)+(p+q)-1][9]     6.045 0.29308
d.o.f=2

Weighted ARCH LM Tests
------------------------------------
            Statistic Shape Scale P-Value
ARCH Lag[3]    0.4768 0.500 2.000  0.4899
ARCH Lag[5]    0.9559 1.440 1.667  0.7461
ARCH Lag[7]    1.1364 2.315 1.543  0.8904

Nyblom stability test
------------------------------------
Joint Statistic:  122.7693
Individual Statistics:              
mu      0.1306
ar1     0.1738
omega  12.7333
alpha1  0.3491
beta1   0.1656
gamma1  0.2125

Asymptotic Critical Values (10% 5% 1%)
Joint Statistic:     	 1.49 1.68 2.12
Individual Statistic:	 0.35 0.47 0.75

Sign Bias Test
------------------------------------
            Statistic Shape Scale P-Value
ARCH Lag[3]    0.4768 0.500 2.000  0.4899
ARCH Lag[5]    0.9559 1.440 1.667  0.7461
ARCH Lag[7]    1.1364 2.315 1.543  0.8904

Nyblom stability test
------------------------------------
Joint Statistic:  122.7693
Individual Statistics:              
mu      0.1306
ar1     0.1738
omega  12.7333
alpha1  0.3491
beta1   0.1656
gamma1  0.2125

Asymptotic Critical Values (10% 5% 1%)
Joint Statistic:     	 1.49 1.68 2.12
Individual Statistic:	 0.35 0.47 0.75

Sign Bias Test
------------------------------------
                   t-value    prob sig
Sign Bias            1.559 0.11925    
Negative Sign Bias   1.936 0.05303   *
Positive Sign Bias   1.467 0.14253    
Joint Effect         9.124 0.02769  **


Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
  group statistic p-value(g-1)
1    20     77.88    4.293e-09
2    30     86.60    1.202e-07
3    40    100.36    2.610e-07
4    50    103.09    1.006e-05


Elapsed time : 1.177835 

                   t-value    prob sig
Sign Bias            1.559 0.11925    
Negative Sign Bias   1.936 0.05303   *
Positive Sign Bias   1.467 0.14253    
Joint Effect         9.124 0.02769  **


Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
  group statistic p-value(g-1)
1    20     77.88    4.293e-09
2    30     86.60    1.202e-07
3    40    100.36    2.610e-07
4    50    103.09    1.006e-05


Elapsed time : 1.177835
out<-data.frame()
omega<-1e-6
alpha<-1e-6
beta<-0.943001
gamma<-0.082897
ht<-seq(1,3)
for (ht1 in c(0.5,1,2)) {
  i<-1
  for (ut1 in -2:2) {
    ht[i]<-omega+beta*ht1+alpha*ut1^2+gamma*ut1^2*sign(ut1<0)
    i<-i+1
  }
  out<-rbind(out, ht)
}
names(out)<-c(-2, -1, 0, 1, 2)
row.names(out)<-c(0.5, 1, 2)
out
           -2        -1         0         1         2
0.5 0.8030935 0.5543995 0.4715015 0.4715025 0.4715055
1   1.2745940 1.0259000 0.9430020 0.9430030 0.9430060
2   2.2175950 1.9689010 1.8860030 1.8860040 1.8860070

レバレッジ効果がある

(5)

  • 11を選択
plot(dlus.garch)
plot(dlus.gjr)

Rplot20.png
Rplot21.png

(6)

dlus.spec<-ugarchspec(variance.model=list(model="eGARCH", garchOrder=c(1,1)), mean.model=list(armaOrder=c(1,0), include.mean=T))
dlus.egarch<-ugarchfit(data=dlus, spec=dlus.spec)
dlus.egarch

*---------------------------------*
*          GARCH Model Fit        *
*---------------------------------*

Conditional Variance Dynamics 	
-----------------------------------
GARCH Model	: eGARCH(1,1)
Mean Model	: ARFIMA(1,0,0)
Distribution	: norm 

Optimal Parameters
------------------------------------
        Estimate  Std. Error    t value Pr(>|t|)
mu      0.000277    0.000195     1.4201 0.155567
ar1    -0.081870    0.032705    -2.5033 0.012304
omega  -0.166643    0.002957   -56.3473 0.000000
alpha1 -0.087830    0.012714    -6.9080 0.000000
beta1   0.982551    0.000020 48090.9514 0.000000
gamma1  0.078968    0.000391   202.0952 0.000000

Robust Standard Errors:
        Estimate  Std. Error    t value Pr(>|t|)
mu      0.000277    0.000214     1.2924 0.196233
ar1    -0.081870    0.034178    -2.3954 0.016601
omega  -0.166643    0.003663   -45.4988 0.000000
alpha1 -0.087830    0.012832    -6.8448 0.000000
beta1   0.982551    0.000024 40637.8939 0.000000
gamma1  0.078968    0.000521   151.5471 0.000000

LogLikelihood : 4767.201 

Information Criteria
------------------------------------
                    
Akaike       -6.8506
Bayes        -6.8280
Shibata      -6.8507
Hannan-Quinn -6.8422

Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
                        statistic p-value
Lag[1]                   0.005655  0.9401
Lag[2*(p+q)+(p+q)-1][2]  0.504447  0.9632
Lag[4*(p+q)+(p+q)-1][5]  1.590462  0.8240
d.o.f=1
H0 : No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
                        statistic p-value
Lag[1]                      4.386 0.03624
Lag[2*(p+q)+(p+q)-1][5]     4.918 0.15978
Lag[4*(p+q)+(p+q)-1][9]     5.652 0.34020
d.o.f=2

Weighted ARCH LM Tests
------------------------------------

-----------------------------------
GARCH Model	: eGARCH(1,1)
Mean Model	: ARFIMA(1,0,0)
Distribution	: norm 

Optimal Parameters
------------------------------------
        Estimate  Std. Error    t value Pr(>|t|)
mu      0.000277    0.000195     1.4201 0.155567
ar1    -0.081870    0.032705    -2.5033 0.012304
omega  -0.166643    0.002957   -56.3473 0.000000
alpha1 -0.087830    0.012714    -6.9080 0.000000
beta1   0.982551    0.000020 48090.9514 0.000000
gamma1  0.078968    0.000391   202.0952 0.000000

Robust Standard Errors:
        Estimate  Std. Error    t value Pr(>|t|)
mu      0.000277    0.000214     1.2924 0.196233
ar1    -0.081870    0.034178    -2.3954 0.016601
omega  -0.166643    0.003663   -45.4988 0.000000
alpha1 -0.087830    0.012832    -6.8448 0.000000
beta1   0.982551    0.000024 40637.8939 0.000000
gamma1  0.078968    0.000521   151.5471 0.000000

LogLikelihood : 4767.201 

Information Criteria
------------------------------------
                    
Akaike       -6.8506
Bayes        -6.8280
Shibata      -6.8507
Hannan-Quinn -6.8422

Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
                        statistic p-value
Lag[1]                   0.005655  0.9401
Lag[2*(p+q)+(p+q)-1][2]  0.504447  0.9632
Lag[4*(p+q)+(p+q)-1][5]  1.590462  0.8240
d.o.f=1
H0 : No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
                        statistic p-value
Lag[1]                      4.386 0.03624
Lag[2*(p+q)+(p+q)-1][5]     4.918 0.15978
Lag[4*(p+q)+(p+q)-1][9]     5.652 0.34020
d.o.f=2

Weighted ARCH LM Tests
------------------------------------
            Statistic Shape Scale P-Value
ARCH Lag[3]   0.07761 0.500 2.000  0.7806
ARCH Lag[5]   1.23064 1.440 1.667  0.6659
ARCH Lag[7]   1.39694 2.315 1.543  0.8418

Nyblom stability test
------------------------------------
Joint Statistic:  2.5097
Individual Statistics:             
mu     0.2007
ar1    0.1198
omega  0.2873
alpha1 1.2433
beta1  0.2688
gamma1 0.2354

Asymptotic Critical Values (10% 5% 1%)
Joint Statistic:     	 1.49 1.68 2.12
Individual Statistic:	 0.35 0.47 0.75

Sign Bias Test
------------------------------------
                   t-value    prob sig
Sign Bias            1.441 0.14975    
Negative Sign Bias   1.967 0.04941  **
Positive Sign Bias   1.387 0.16578    
Joint Effect         8.142 0.04317  **


Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
  group statistic p-value(g-1)
1    20     74.78    1.452e-08
2    30     83.45    3.577e-07
3    40     87.99    1.202e-05
4    50    119.64    7.685e-08


Elapsed time : 0.8469431 

            Statistic Shape Scale P-Value
ARCH Lag[3]   0.07761 0.500 2.000  0.7806
ARCH Lag[5]   1.23064 1.440 1.667  0.6659
ARCH Lag[7]   1.39694 2.315 1.543  0.8418

Nyblom stability test
------------------------------------
Joint Statistic:  2.5097
Individual Statistics:             
mu     0.2007
ar1    0.1198
omega  0.2873
alpha1 1.2433
beta1  0.2688
gamma1 0.2354

Asymptotic Critical Values (10% 5% 1%)
Joint Statistic:     	 1.49 1.68 2.12
Individual Statistic:	 0.35 0.47 0.75

Sign Bias Test
------------------------------------
                   t-value    prob sig
Sign Bias            1.441 0.14975    
Negative Sign Bias   1.967 0.04941  **
Positive Sign Bias   1.387 0.16578    
Joint Effect         8.142 0.04317  **


Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
  group statistic p-value(g-1)
1    20     74.78    1.452e-08
2    30     83.45    3.577e-07
3    40     87.99    1.202e-05
4    50    119.64    7.685e-08


Elapsed time : 0.8469431
out<-data.frame()
omega<--0.166646
alpha<--0.087830
beta<-0.982551
gamma<-0.078968
ht<-seq(1,3)
for (ht1 in c(0.5,1,2)) {
  i<-1
  for (ut1 in -2:2) {
    ht[i]<-omega+beta*ht1+alpha*ut1^2+gamma*ut1^2*sign(ut1<0)
    i<-i+1
  }
  out<-rbind(out, ht)
}
names(out)<-c(-2, -1, 0, 1, 2)
row.names(out)<-c(0.5, 1, 2)
out
              -2        -1         0         1          2
0.5 0.2891845 0.3157705 0.3246325 0.2368025 -0.0266875
1   0.7804600 0.8070460 0.8159080 0.7280780  0.4645880
2   1.7630110 1.7895970 1.7984590 1.7106290  1.4471390
        -2        -1         0         1          2
0.5 0.2891845 0.3157705 0.3246325 0.2368025 -0.0266875
1   0.7804600 0.8070460 0.8159080 0.7280780  0.4645880
2   1.7630110 1.7895970 1.7984590 1.7106290  1.4471390

レバレッジ効果がある

(7)

  • 11を選択
plot(dlus.egarch)

Rplot22.png

(8)

par(mfrow=c(2,1))
jp<-msci_day$jp
plot(jp, type="l")
dljp<-diff(log(jp))
plot(dljp, type="l")

acf(dljp)
pacf(dljp)

acf(dljp^2)
pacf(dljp^2)

Rplot23.png
Rplot24.png
Rplot25.png

# GARCH
dljp.spec<-ugarchspec(variance.model=list(model="sGARCH", garchOrder=c(1,1)), mean.model=list(armaOrder=c(1,0), include.mean=T))
dljp.garch<-ugarchfit(data=dljp, spec=dljp.spec)
dljp.garch
*---------------------------------*
*          GARCH Model Fit        *
*---------------------------------*

Conditional Variance Dynamics 	
-----------------------------------
GARCH Model	: sGARCH(1,1)
Mean Model	: ARFIMA(1,0,0)
Distribution	: norm 

Optimal Parameters
------------------------------------
        Estimate  Std. Error  t value Pr(>|t|)
mu      0.000566    0.000298  1.90212 0.057156
ar1    -0.010948    0.028309 -0.38675 0.698944
omega   0.000005    0.000003  1.39533 0.162918
alpha1  0.083277    0.003737 22.28493 0.000000
beta1   0.889458    0.011228 79.22073 0.000000

Robust Standard Errors:
        Estimate  Std. Error  t value Pr(>|t|)
mu      0.000566    0.000282  2.00790 0.044653
ar1    -0.010948    0.025292 -0.43289 0.665098
omega   0.000005    0.000011  0.43276 0.665188
alpha1  0.083277    0.040851  2.03853 0.041497
beta1   0.889458    0.027516 32.32567 0.000000

LogLikelihood : 4150.981 

Information Criteria
------------------------------------
                    
Akaike       -5.9654
Bayes        -5.9466
Shibata      -5.9655
Hannan-Quinn -5.9584

Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
                        statistic p-value
Lag[1]                    0.02266  0.8803
Lag[2*(p+q)+(p+q)-1][2]   1.08159  0.6901
Lag[4*(p+q)+(p+q)-1][5]   1.86771  0.7491
d.o.f=1
H0 : No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
                        statistic p-value
Lag[1]                     0.1186  0.7306
Lag[2*(p+q)+(p+q)-1][5]    1.1543  0.8239
Lag[4*(p+q)+(p+q)-1][9]    2.5367  0.8323
d.o.f=2

Weighted ARCH LM Tests
------------------------------------
            Statistic Shape Scale P-Value
ARCH Lag[3]  0.002486 0.500 2.000  0.9602
ARCH Lag[5]  2.041177 1.440 1.667  0.4622
ARCH Lag[7]  2.500743 2.315 1.543  0.6123

Nyblom stability test
------------------------------------
Joint Statistic:  1.3237
Individual Statistics:              
mu     0.12216
ar1    0.63447
omega  0.07506
alpha1 0.10576
beta1  0.12412

Asymptotic Critical Values (10% 5% 1%)
Joint Statistic:     	 1.28 1.47 1.88
Individual Statistic:	 0.35 0.47 0.75

Sign Bias Test
------------------------------------
                        statistic p-value
Lag[1]                    0.02266  0.8803
Lag[2*(p+q)+(p+q)-1][2]   1.08159  0.6901
Lag[4*(p+q)+(p+q)-1][5]   1.86771  0.7491
d.o.f=1
H0 : No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
                        statistic p-value
Lag[1]                     0.1186  0.7306
Lag[2*(p+q)+(p+q)-1][5]    1.1543  0.8239
Lag[4*(p+q)+(p+q)-1][9]    2.5367  0.8323
d.o.f=2

Weighted ARCH LM Tests
------------------------------------
            Statistic Shape Scale P-Value
ARCH Lag[3]  0.002486 0.500 2.000  0.9602
ARCH Lag[5]  2.041177 1.440 1.667  0.4622
ARCH Lag[7]  2.500743 2.315 1.543  0.6123

Nyblom stability test
------------------------------------
Joint Statistic:  1.3237
Individual Statistics:              
mu     0.12216
ar1    0.63447
omega  0.07506
alpha1 0.10576
beta1  0.12412

Asymptotic Critical Values (10% 5% 1%)
Joint Statistic:     	 1.28 1.47 1.88
Individual Statistic:	 0.35 0.47 0.75

Sign Bias Test
------------------------------------
                   t-value    prob sig
Sign Bias           0.3668 0.71379    
Negative Sign Bias  0.8259 0.40900    
Positive Sign Bias  1.8655 0.06233   *
Joint Effect        6.9489 0.07354   *


Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
  group statistic p-value(g-1)
1    20     26.43      0.11860
2    30     41.88      0.05751
3    40     46.26      0.19758
4    50     51.80      0.36520


Elapsed time : 1.276816 

                   t-value    prob sig
Sign Bias           0.3668 0.71379    
Negative Sign Bias  0.8259 0.40900    
Positive Sign Bias  1.8655 0.06233   *
Joint Effect        6.9489 0.07354   *


Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
  group statistic p-value(g-1)
1    20     26.43      0.11860
2    30     41.88      0.05751
3    40     46.26      0.19758
4    50     51.80      0.36520


Elapsed time : 1.276816
# GJR
dljp.spec<-ugarchspec(variance.model=list(model="gjrGARCH", garchOrder=c(1,1)), mean.model=list(armaOrder=c(1,0), include.mean=T))
dljp.gjr<-ugarchfit(data=dljp, spec=dljp.spec)
dljp.gjr

*---------------------------------*
*          GARCH Model Fit        *
*---------------------------------*

Conditional Variance Dynamics 	
-----------------------------------
GARCH Model	: gjrGARCH(1,1)
Mean Model	: ARFIMA(1,0,0)
Distribution	: norm 

Optimal Parameters
------------------------------------
        Estimate  Std. Error   t value Pr(>|t|)
mu      0.000304    0.000304  0.999384 0.317609
ar1    -0.001567    0.028243 -0.055491 0.955747
omega   0.000007    0.000000 20.873872 0.000000
alpha1  0.017432    0.006800  2.563331 0.010367
beta1   0.877409    0.010546 83.198403 0.000000
gamma1  0.123741    0.025443  4.863400 0.000001

Robust Standard Errors:
        Estimate  Std. Error   t value Pr(>|t|)
mu      0.000304    0.000282   1.07554 0.282131
ar1    -0.001567    0.026541  -0.05905 0.952912
omega   0.000007    0.000000  24.15722 0.000000
alpha1  0.017432    0.007349   2.37207 0.017689
beta1   0.877409    0.008430 104.07677 0.000000
gamma1  0.123741    0.031752   3.89708 0.000097

LogLikelihood : 4162.846 

Information Criteria
------------------------------------
                    
Akaike       -5.9811
Bayes        -5.9585
Shibata      -5.9811
Hannan-Quinn -5.9726

Weighted Ljung-Box Test on Standardized Residuals
------------------------------------

*---------------------------------*
*          GARCH Model Fit        *
*---------------------------------*

Conditional Variance Dynamics 	
-----------------------------------
GARCH Model	: gjrGARCH(1,1)
Mean Model	: ARFIMA(1,0,0)
Distribution	: norm 

Optimal Parameters
------------------------------------
        Estimate  Std. Error   t value Pr(>|t|)
mu      0.000304    0.000304  0.999384 0.317609
ar1    -0.001567    0.028243 -0.055491 0.955747
omega   0.000007    0.000000 20.873872 0.000000
alpha1  0.017432    0.006800  2.563331 0.010367
beta1   0.877409    0.010546 83.198403 0.000000
gamma1  0.123741    0.025443  4.863400 0.000001

Robust Standard Errors:
        Estimate  Std. Error   t value Pr(>|t|)
mu      0.000304    0.000282   1.07554 0.282131
ar1    -0.001567    0.026541  -0.05905 0.952912
omega   0.000007    0.000000  24.15722 0.000000
alpha1  0.017432    0.007349   2.37207 0.017689
beta1   0.877409    0.008430 104.07677 0.000000
gamma1  0.123741    0.031752   3.89708 0.000097

LogLikelihood : 4162.846 

Information Criteria
------------------------------------
                    
Akaike       -5.9811
Bayes        -5.9585
Shibata      -5.9811
Hannan-Quinn -5.9726

Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
                        statistic p-value
Lag[1]                    0.07495  0.7843
Lag[2*(p+q)+(p+q)-1][2]   0.99937  0.7403
Lag[4*(p+q)+(p+q)-1][5]   1.76512  0.7776
d.o.f=1
H0 : No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
                        statistic p-value
Lag[1]                     0.6437  0.4224
Lag[2*(p+q)+(p+q)-1][5]    2.0086  0.6164
Lag[4*(p+q)+(p+q)-1][9]    3.0480  0.7510
d.o.f=2

Weighted ARCH LM Tests
------------------------------------
            Statistic Shape Scale P-Value
ARCH Lag[3]    0.3121 0.500 2.000  0.5764
ARCH Lag[5]    1.5248 1.440 1.667  0.5858
ARCH Lag[7]    1.6458 2.315 1.543  0.7917

Nyblom stability test
------------------------------------
Joint Statistic:  21.5161
Individual Statistics:             
mu     0.2835
ar1    0.8198
omega  4.1418
alpha1 0.2854
beta1  0.2736
gamma1 0.1365

Asymptotic Critical Values (10% 5% 1%)
Joint Statistic:     	 1.49 1.68 2.12
Individual Statistic:	 0.35 0.47 0.75

Sign Bias Test
------------------------------------
                        statistic p-value
Lag[1]                    0.07495  0.7843
Lag[2*(p+q)+(p+q)-1][2]   0.99937  0.7403
Lag[4*(p+q)+(p+q)-1][5]   1.76512  0.7776
d.o.f=1
H0 : No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
                        statistic p-value
Lag[1]                     0.6437  0.4224
Lag[2*(p+q)+(p+q)-1][5]    2.0086  0.6164
Lag[4*(p+q)+(p+q)-1][9]    3.0480  0.7510
d.o.f=2

Weighted ARCH LM Tests
------------------------------------
            Statistic Shape Scale P-Value
ARCH Lag[3]    0.3121 0.500 2.000  0.5764
ARCH Lag[5]    1.5248 1.440 1.667  0.5858
ARCH Lag[7]    1.6458 2.315 1.543  0.7917

Nyblom stability test
------------------------------------
Joint Statistic:  21.5161
Individual Statistics:             
mu     0.2835
ar1    0.8198
omega  4.1418
alpha1 0.2854
beta1  0.2736
gamma1 0.1365

Asymptotic Critical Values (10% 5% 1%)
Joint Statistic:     	 1.49 1.68 2.12
Individual Statistic:	 0.35 0.47 0.75

Sign Bias Test
------------------------------------
                   t-value   prob sig
Sign Bias           0.4724 0.6367    
Negative Sign Bias  0.4875 0.6260    
Positive Sign Bias  0.8604 0.3897    
Joint Effect        2.1598 0.5399    


Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
  group statistic p-value(g-1)
1    20     25.08       0.1580
2    30     35.54       0.1874
3    40     36.42       0.5883
4    50     51.44       0.3785


Elapsed time : 0.350035
out<-data.frame()
omega<--0.361037
alpha<-0.017432
beta<-0.877409
gamma<-0.123741
ht<-seq(1,3)
for (ht1 in c(0.5,1,2)) {
  i<-1
  for (ut1 in -2:2) {
    ht[i]<-omega+beta*ht1+alpha*ut1^2+gamma*ut1^2*sign(ut1<0)
    i<-i+1
  }
  out<-rbind(out, ht)
}
names(out)<-c(-2, -1, 0, 1, 2)
row.names(out)<-c(0.5, 1, 2)
out
          -2        -1         0         1         2
0.5 1.003403 0.5798845 0.4387115 0.4561435 0.5084395
1   1.442108 1.0185890 0.8774160 0.8948480 0.9471440
2   2.319517 1.8959980 1.7548250 1.7722570 1.8245530
          -2        -1         0         1         2
0.5 1.003403 0.5798845 0.4387115 0.4561435 0.5084395
1   1.442108 1.0185890 0.8774160 0.8948480 0.9471440
2   2.319517 1.8959980 1.7548250 1.7722570 1.8245530
# EGARCH
dljp.spec<-ugarchspec(variance.model=list(model="eGARCH", garchOrder=c(1,1)), mean.model=list(armaOrder=c(1,0), include.mean=T))
dljp.egarch<-ugarchfit(data=dljp, spec=dljp.spec)
dljp.egarch

*---------------------------------*
*          GARCH Model Fit        *
*---------------------------------*

Conditional Variance Dynamics 	
-----------------------------------
GARCH Model	: eGARCH(1,1)
Mean Model	: ARFIMA(1,0,0)
Distribution	: norm 

Optimal Parameters
------------------------------------
        Estimate  Std. Error  t value Pr(>|t|)
mu      0.000191    0.000377  0.50733 0.611924
ar1    -0.003791    0.029245 -0.12961 0.896873
omega  -0.361037    0.232596 -1.55220 0.120614
alpha1 -0.088885    0.037871 -2.34705 0.018923
beta1   0.958573    0.026242 36.52825 0.000000
gamma1  0.168848    0.079853  2.11450 0.034473

Robust Standard Errors:
        Estimate  Std. Error   t value Pr(>|t|)
mu      0.000191    0.000874  0.218611  0.82695
ar1    -0.003791    0.039681 -0.095524  0.92390
omega  -0.361037    0.898477 -0.401832  0.68781
alpha1 -0.088885    0.134327 -0.661703  0.50816
beta1   0.958573    0.101299  9.462813  0.00000
gamma1  0.168848    0.309855  0.544926  0.58581

LogLikelihood : 4162.689 

Information Criteria
------------------------------------
                    
Akaike       -5.9808
Bayes        -5.9582
Shibata      -5.9809
Hannan-Quinn -5.9724

Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
                        statistic p-value
Lag[1]                     0.1264  0.7222
Lag[2*(p+q)+(p+q)-1][2]    1.2006  0.6159
Lag[4*(p+q)+(p+q)-1][5]    2.0282  0.7032
d.o.f=1
H0 : No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
                        statistic p-value
Lag[1]                     0.6199  0.4311
Lag[2*(p+q)+(p+q)-1][5]    1.9735  0.6247
Lag[4*(p+q)+(p+q)-1][9]    3.1966  0.7261
d.o.f=2

Weighted ARCH LM Tests
------------------------------------
                        statistic p-value
Lag[1]                     0.1264  0.7222
Lag[2*(p+q)+(p+q)-1][2]    1.2006  0.6159
Lag[4*(p+q)+(p+q)-1][5]    2.0282  0.7032
d.o.f=1
H0 : No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
                        statistic p-value
Lag[1]                     0.6199  0.4311
Lag[2*(p+q)+(p+q)-1][5]    1.9735  0.6247
Lag[4*(p+q)+(p+q)-1][9]    3.1966  0.7261
d.o.f=2

Weighted ARCH LM Tests
------------------------------------
            Statistic Shape Scale P-Value
ARCH Lag[3]   0.04281 0.500 2.000  0.8361
ARCH Lag[5]   1.73869 1.440 1.667  0.5319
ARCH Lag[7]   1.91168 2.315 1.543  0.7360

Nyblom stability test
------------------------------------
Joint Statistic:  1.6343
Individual Statistics:              
mu     0.32484
ar1    0.81875
omega  0.26270
alpha1 0.19614
beta1  0.26888
gamma1 0.02107

Asymptotic Critical Values (10% 5% 1%)
Joint Statistic:     	 1.49 1.68 2.12
Individual Statistic:	 0.35 0.47 0.75

Sign Bias Test
------------------------------------
                   t-value   prob sig
Sign Bias           0.1859 0.8525    
Negative Sign Bias  0.4346 0.6640    
Positive Sign Bias  1.0319 0.3023    
Joint Effect        1.9371 0.5856    


Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
  group statistic p-value(g-1)
1    20     33.02       0.0239
2    30     32.99       0.2780
3    40     41.02       0.3820
4    50     49.14       0.4676


Elapsed time : 0.663059 

            Statistic Shape Scale P-Value
ARCH Lag[3]   0.04281 0.500 2.000  0.8361
ARCH Lag[5]   1.73869 1.440 1.667  0.5319
ARCH Lag[7]   1.91168 2.315 1.543  0.7360

Nyblom stability test
------------------------------------
Joint Statistic:  1.6343
Individual Statistics:              
mu     0.32484
ar1    0.81875
omega  0.26270
alpha1 0.19614
beta1  0.26888
gamma1 0.02107

Asymptotic Critical Values (10% 5% 1%)
Joint Statistic:     	 1.49 1.68 2.12
Individual Statistic:	 0.35 0.47 0.75

Sign Bias Test
------------------------------------
                   t-value   prob sig
Sign Bias           0.1859 0.8525    
Negative Sign Bias  0.4346 0.6640    
Positive Sign Bias  1.0319 0.3023    
Joint Effect        1.9371 0.5856    


Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
  group statistic p-value(g-1)
1    20     33.02       0.0239
2    30     32.99       0.2780
3    40     41.02       0.3820
4    50     49.14       0.4676


Elapsed time : 0.663059
out<-data.frame()
omega<-0.000191
alpha<--0.088884
beta<-0.958573
gamma<-0.168848
ht<-seq(1,3)
for (ht1 in c(0.5,1,2)) {
  i<-1
  for (ut1 in -2:2) {
    ht[i]<-omega+beta*ht1+alpha*ut1^2+gamma*ut1^2*sign(ut1<0)
    i<-i+1
  }
  out<-rbind(out, ht)
}
names(out)<-c(-2, -1, 0, 1, 2)
row.names(out)<-c(0.5, 1, 2)
out
           -2        -1         0         1          2
0.5 0.4381015 0.1982125 0.1182495 0.0293645 -0.2372905
1   0.9173880 0.6774990 0.5975360 0.5086510  0.2419960
2   1.8759610 1.6360720 1.5561090 1.4672240  1.2005690
           -2        -1         0         1          2
0.5 0.4381015 0.1982125 0.1182495 0.0293645 -0.2372905
1   0.9173880 0.6774990 0.5975360 0.5086510  0.2419960
2   1.8759610 1.6360720 1.5561090 1.4672240  1.2005690
  • 11を選択
plot(dljp.garch)
plot(dljp.gjr)
plot(dljp.egarch)

Rplot27.png
Rplot28.png
Rplot29.png

7.5

DVEC, BEKK, CCC

  • 他のモデルの関数が分からずCCCモデルのみ
library(ccgarch)

msci_day<-read.table("msci_day.txt",header=T)
jp<-msci_day$jp
uk<-msci_day$uk
us<-msci_day$us
data<-as.matrix(msci_day[,6:8])
a<-c(0.003, 0.005, 0.001)
A<-diag(c(0.2, 0.3, 0.15))
B<-diag(c(0.79, 0.6, 0.8))
R<-matrix(c(cor(jp,jp), cor(jp,uk), cor(jp,us), cor(uk,jp), cor(uk,uk), cor(uk,us), cor(us,jp), cor(us,uk), cor(us,us)), 3, 3)
eccc.estimation(a, A, B, R, data, model="diagonal")

でよいと思うが、

Error in solve.default(H) : 
  system is computationally singular: reciprocal condition number = 1.26294e-21
Error in solve.default(H) : 
  system is computationally singular: reciprocal condition number = 1.26294e-21
3
5
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
3
5

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?