2
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

『経済・ファイナンスデータの計量時系列分析』章末問題を解く-第1章時系列分析の基礎概念-

Last updated at Posted at 2018-05-11

経済・ファイナンスデータの軽量時系列分析
の章末問題を解いていきます。

必要に応じ『統計学のための数学入門30講を参照しています。

Rの実施は『経済・ファイナンスデータの計量時系列分析』章末問題をRで解く-第1章時系列分析の基礎概念-にあります。

1.1

E(x)=\sum{kPr(x=k)} ... 30講p19\\

つまり和は分解できるので

\begin{align}
\gamma_k &= E(y_t y_{t-k}) - \mu{E(y_{t-k}) + E(y_t)} + E(\mu^2) \\ 
&= E(y_t)E(y_{t-k}) - \mu{E(y_{t-k}) + E(y_t)} + E(\mu^2) \\ 
&= \mu\mu - \mu(2\mu) + E(\mu^2) \\ 
&= -\mu^2 + E(\mu^2) \\ 
\gamma_{-k} &= E(y_t y_{t+k}) - \mu{E(y_{t+k} + E(y_t)} + E(\mu^2) \\ 
&= E(y_t)E(y_{t+k}) - \mu{E(y_{t+k} + E(y_t)} + E(\mu^2) \\ 
&= \mu^2 - 2\mu^2 +E(\mu^2) \\ 
&= -\mu^2 + E(\mu^2) \\ 
ゆえに \gamma_k &= \gamma_{-k}
\end{align}

1.2

y_t = \mu + \epsilon_t, \epsilon \sim W.N.(\sigma^2)

定義1.4より、

\begin{align}
E(\epsilon_t) &= 0 \\ 
\gamma_k &= E(\epsilon_t \epsilon_{t-k}) = 
   \begin{cases} \sigma^2 & k = 0 \\ 
                 0 & k \neq 0
   \end{cases} \\
よって \\
E(y_t) &= E(\mu + \epsilon_t) \\ 
&= E(\mu) + E(\epsilon_t) \\ &= \mu \\ Cov(y_t, y_{t-k}) &= E[(y_t - \mu) (y_{t-k} - \mu)] \\ &= E[(\mu + \epsilon_t - \mu) (\mu + \epsilon_{t-k} - \mu)] \\ &= E[\epsilon_t \epsilon_{t-k}] \\ &= \gamma_k \\ 
\end{align}

ゆえに(1.8)のモデルは弱定常過程

1.4

わからず、、、


次章『経済・ファイナンスデータの計量時系列分析』章末問題を解く-第2章ARMA過程-

2
3
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
2
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?