0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

コンビネータ論理:抽象化 B=[f,g,x].f(g(x))

Posted at

コンビネータ論理を学んでいて、$B=[f,g,x].f(g(x))$がどうなるか、しりたかったので、やってみた。
参考にしているのは下記の書籍:

Lambda-Calculus and Combinators:An Introduction PDF

定義 2.18(抽象化)

(a)$\ [x].M\equiv KM$ if $x\in FV(M)$
(b)$\ [x].x\equiv I$
(c)$\ [x].Ux\equiv U$ if $ x\notin FV(U)$
(f)$\ [x].UV\equiv S([x].U)([x].V)$もし(a)も(c)も適用できない場合。

問題

$B=[f,g,x].f(g(x)$について計算してみる。
$[f,g,x].f(g(x)\equiv[f].([g].([x].f(g(x))))$なので、

一番内側の式をxについて抽象化。

$[x].f(g(x)\equiv S([x].f)([x].g(x))$
$\equiv S(Kf)(g)
\equiv
S(Kf)g$

となる。

検証のために$x$を適用してみると
$S(Kf)g x$
$\equiv(Kf)x(gx)$
$\equiv f(gx)\equiv f(g(x))$

$$[x].f(g(x)\rightarrow S(Kf)g$$が示された。

更に[g]で抽象化

$[g].S(Kf)g$
$\equiv S([g].S(Kf))([g].g)$
$\equiv S(K(S(Kf)))I$

検証のために$g$を右から適用してみる。
$S(K(S(Kf)))I g$
$\equiv (K(S(Kf)))g (Ig)$
$\equiv S(Kf) g$

$$S(Kf)g\rightarrow S(K(S(Kf)))I$$が示された。

最後に[f]で抽象化

$[f].S(K(S(Kf)))I$
$S([f].S(K(S(Kf)))) ([f].I)$
$S\{S([f].S)([f].K(S(Kf)))\} (KI)$
$S\{S(KS)(S([f].K)([f].S(Kf)))\} (KI)$
$S\{S(KS)(S(KK)(S([f].S)([f].Kf)))\} (KI)$
$S\{S(KS)(S(KK)(S(KS)K))\} (KI)$

検証のために$f$を右から適用すると
$S(S(KS)(S(KK)(S(KS)K))) (KI) f$
$\rightarrow S(KS)(S(KK)(S(KS)K))f (KIf)$
$\rightarrow (KS)f (S(KK)(S(KS)K)f) I$
$\rightarrow S ((KK)f (S(KS)Kf)) I$
$\rightarrow S (K ((KS)f(Kf))) I$
$\rightarrow S (K (S (Kf))) I$

$$[f].S(K(S(Kf)))I\rightarrow S(S(KS)(S(KK)(S(KS)K))) (KI)$$

最終的に
$$[f,g,x].f(g(x))\rightarrow S(S(KS)(S(KK)(S(KS)K))) (KI)$$

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?