0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

BarendregtのコンビネータX≡λx.x(xS(KK))KからK,Sを導く

Posted at

Barendregtのコンビネータは、
$$X\equiv\lambda x.x(xS(KK))K$$

と定義される。このコンビネータのみで$K,S$を導くことができる。

The Lambda Calculus: Its Syntax and Semantics
H. P. Barendregt
8.5.16 (ii)

XX≡KKを求める

$XX\equiv(\lambda x.x(xS(KK))K)X\equiv X(XS(KK))K$

ここで
$XS(KK)\equiv(\lambda x.x(xS(KK))K)S(KK)$
$\rightarrow S(SS(KK))K (KK)$
$\rightarrow (SS(KK))(KK) (K(KK))$
$\rightarrow S(KK) ((KK)(KK)) (K(KK))$
$\rightarrow S(KK) K (K(KK))$ by $(KK)(KK)\rightarrow K$
$\rightarrow (KK)(K(KK)) (K(K(KK)))$
$\rightarrow K (K(K(KK)))$

$XX\equiv X(XS(KK))K
\equiv X(K(K(K(KK))))K$
$\equiv(\lambda x.x(xS(KK))K)(K(K(K(KK))))K$
$\rightarrow(K(K(K(KK))))(K(K(K(KK)))S(KK))KK$
$\rightarrow K(K(KK))KK
\rightarrow (K(KK))K
\rightarrow KK$

$$XX\equiv KK$$

XXX≡Kを求める

$XXX\equiv(XX)X
\equiv(KK)X
\rightarrow K$

$$XXX\equiv K$$

XK≡S

$XK\equiv(\lambda x.x(xS(KK))K)K$
$\rightarrow K(KS(KK))K
\rightarrow K(S)K
\rightarrow S$

$$XK\equiv S$$

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?