0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

コンビネータ論理: 抽象化 [f,g,x].fgx

Last updated at Posted at 2025-06-25

コンビネータ論理を学んでいる。参考にしているのは下記の書籍:

Lambda-Calculus and Combinators:An Introduction PDF

定義 2.18(抽象化)

(a)$\ [x].M\equiv KM$ if $x\in FV(M)$
(b)$\ [x].x\equiv I$
(c)$\ [x].Ux\equiv U$ if $ x\notin FV(U)$
(f)$\ [x].UV\equiv S([x].U)([x].V)$もし(a)も(c)も適用できない場合。

[f,g,x].fgx

$[f,g,x]$について解いていこう。

上式は以下のようになるので
$[f,g,x].fgx\equiv [f].([g].([x].fgx))$

[x]について抽象化。

$[x].fgx\equiv[x].(fg)x
\equiv fg$
となる。

更に[g]で抽象化

$[g].([x].fgx)\equiv [g].fg\equiv f$

最後に[f]で抽象化

$[f].([g].([x].fgx))
\equiv[f].f
\equiv I$

最終的に
$([f,g,x].fgx)fgx\equiv Ifgx\equiv fgx$

$$[f,g,x].fgx\equiv I$$

何かあたりまえの結果。

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?