1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

【python】QPSK・16QAM・64QAM判定・復調用の関数

Last updated at Posted at 2019-02-28

https://qiita.com/Seiji_Tanaka/items/a059090ee020a5d5c648
の続きですが、変調した信号を復調する関数も書きました。自分でも驚くほどのクソコードなので腰を抜かさないように注意してください。

import numpy as np

def QPSK_to_bit(RX_symbol):
    temp = RX_symbol.shape
    N = temp[0]
    sym_num = temp[1]
    bit_num = sym_num * 2

    odd_bit = np.real(RX_symbol)
    odd_bit[odd_bit > 0] = 1
    odd_bit[odd_bit < 0] = 0

    even_bit = np.imag(RX_symbol)
    even_bit[even_bit > 0] = 1
    even_bit[even_bit < 0] = 0

    RX_bit = np.zeros((N, bit_num))
    RX_bit[:, 0:bit_num:2] = odd_bit
    RX_bit[:, 1:bit_num:2] = even_bit

    return RX_bit


def QAM16_to_bit(RX_symbol):
    temp = RX_symbol.shape
    N = temp[0]
    sym_num = temp[1]
    bit_num = sym_num * 4

    # 整数に直す
    RX_symbol = RX_symbol * np.sqrt(10)

    # 複素数を一旦分離する
    RX_symbol_real = np.real(RX_symbol)
    RX_symbol_imag = np.imag(RX_symbol)

    # 最も近いシンボルの値に丸め込み
    real_copy = RX_symbol_real.copy()
    imag_copy = RX_symbol_imag.copy()

    RX_symbol_real[real_copy > 2] = 3
    RX_symbol_real[2 > real_copy] = 1
    RX_symbol_real[0 > real_copy] = -1
    RX_symbol_real[-2 > real_copy] = -3

    RX_symbol_imag[imag_copy > 2] = 3
    RX_symbol_imag[2 > imag_copy] = 1
    RX_symbol_imag[0 > imag_copy] = -1
    RX_symbol_imag[-2 > imag_copy] = -3

    # 再び結合し、もろもろの操作
    temp = np.zeros((N, sym_num * 2))
    temp[:, 0:sym_num*2:2] = RX_symbol_real
    temp[:, 1:sym_num*2:2] = RX_symbol_imag

    temp2 = np.zeros((N, sym_num * 2)) + 1j * np.zeros((N, sym_num * 2))
    temp2[temp == 3] = 1 - 0j
    temp2[temp == 1] = 1 + 1j
    temp2[temp == -1] = - 0 + 1j
    temp2[temp == -3] = - 0 - 0j

    RX_bit = np.zeros((N, bit_num))
    RX_bit[:, 0:bit_num:2] = np.real(temp2)
    RX_bit[:, 1:bit_num:2] = np.imag(temp2)

    return RX_bit

def QAM64_to_bit(RX_symbol):
    temp = RX_symbol.shape
    N = temp[0]
    sym_num = temp[1]
    bit_num = sym_num * 6

    # 整数に直す
    RX_symbol = RX_symbol * np.sqrt(42)

    # 複素数を一旦分離する
    RX_symbol_real = np.real(RX_symbol)
    RX_symbol_imag = np.imag(RX_symbol)

    # 最も近いシンボルの値に丸め込み
    real_copy = RX_symbol_real.copy()
    imag_copy = RX_symbol_imag.copy()

    RX_symbol_real[real_copy > 6] = 7
    RX_symbol_real[6 > real_copy] = 5
    RX_symbol_real[4 > real_copy] = 3
    RX_symbol_real[2 > real_copy] = 1
    RX_symbol_real[0 > real_copy] = -1
    RX_symbol_real[-2 > real_copy] = -3
    RX_symbol_real[-4 > real_copy] = -5
    RX_symbol_real[-6 > real_copy] = -7

    RX_symbol_imag[imag_copy > 6] = 7
    RX_symbol_imag[6 > imag_copy] = 5
    RX_symbol_imag[4 > imag_copy] = 3
    RX_symbol_imag[2 > imag_copy] = 1
    RX_symbol_imag[0 > imag_copy] = -1
    RX_symbol_imag[-2 > imag_copy] = -3
    RX_symbol_imag[-4 > imag_copy] = -5
    RX_symbol_imag[-6 > imag_copy] = -7

    # 再び結合し、もろもろの操作
    temp = np.zeros((N, sym_num * 2))
    temp[:, 0:sym_num*2:2] = RX_symbol_real
    temp[:, 1:sym_num*2:2] = RX_symbol_imag

    RX_bit_first = np.zeros((N, int(bit_num/3)))
    RX_bit_first[temp > 0] = 1
    RX_bit_first[temp < 0] = 0

    RX_bit_second = np.zeros((N, int(bit_num / 3)))
    RX_bit_second[temp == 7] = 0
    RX_bit_second[temp == 5] = 0
    RX_bit_second[temp == 3] = 1
    RX_bit_second[temp == 1] = 1
    RX_bit_second[temp == -1] = 1
    RX_bit_second[temp == -3] = 1
    RX_bit_second[temp == -5] = 0
    RX_bit_second[temp == -7] = 0

    RX_bit_third = np.zeros((N, int(bit_num / 3)))
    RX_bit_third[temp == 7] = 0
    RX_bit_third[temp == 5] = 1
    RX_bit_third[temp == 3] = 1
    RX_bit_third[temp == 1] = 0
    RX_bit_third[temp == -1] = 0
    RX_bit_third[temp == -3] = 1
    RX_bit_third[temp == -5] = 1
    RX_bit_third[temp == -7] = 0

    RX_bit = np.zeros((N, bit_num))
    RX_bit[:, 0:bit_num:3] = RX_bit_first
    RX_bit[:, 1:bit_num:3] = RX_bit_second
    RX_bit[:, 2:bit_num:3] = RX_bit_third

    return RX_bit

通信全体のシミュレーションはまたそのうち書きます。

1
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?