1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

がちもとさんAdvent Calendar 2022

Day 13

posenet-pytorchやーる(Python3.9、Windows10)

Last updated at Posted at 2022-12-12

はじめに

posenet-pytorchやりまーす
https://github.com/rwightman/posenet-pytorch

開発環境

  • Windows 10
  • Python 3.9

導入

1.Anacondaで仮想環境を作成
$ conda create -n posenet-pytorch python=3.9
$ conda activate posenet-pytorch

2.ライブラリのインストール
$ pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116
$ pip install requests opencv-python==4.6.0.66

PyTorchのバージョン

  • torch 1.12.0+cu113
  • torchvision 0.13.0+cu113
  • torchaudio 0.12.0+cu116

3.実行(画像デモ)
$ cd posenet-pytorch-master

imagesフォルダに画像を入れておく
$ python image_demo.py --model 101 --image_dir ./images --output_dir ./output

GPUで実行

image_demo.py
import cv2
import time
import argparse
import os
import torch

import posenet


parser = argparse.ArgumentParser()
parser.add_argument('--model', type=int, default=101)
parser.add_argument('--scale_factor', type=float, default=1.0)
parser.add_argument('--notxt', action='store_true')
parser.add_argument('--image_dir', type=str, default='./images')
parser.add_argument('--output_dir', type=str, default='./output')
args = parser.parse_args()


def main():
    model = posenet.load_model(args.model)
    model = model.cuda()
    output_stride = model.output_stride

    if args.output_dir:
        if not os.path.exists(args.output_dir):
            os.makedirs(args.output_dir)

    filenames = [
        f.path for f in os.scandir(args.image_dir) if f.is_file() and f.path.endswith(('.png', '.jpg', '.jpeg'))]

    start = time.time()
    for f in filenames:
        input_image, draw_image, output_scale = posenet.read_imgfile(
            f, scale_factor=args.scale_factor, output_stride=output_stride)

        with torch.no_grad():
            input_image = torch.Tensor(input_image).cuda()
            # input_image = torch.Tensor(input_image)

            heatmaps_result, offsets_result, displacement_fwd_result, displacement_bwd_result = model(input_image)

            pose_scores, keypoint_scores, keypoint_coords = posenet.decode_multiple_poses(
                heatmaps_result.squeeze(0),
                offsets_result.squeeze(0),
                displacement_fwd_result.squeeze(0),
                displacement_bwd_result.squeeze(0),
                output_stride=output_stride,
                max_pose_detections=10,
                min_pose_score=0.25)

        keypoint_coords *= output_scale

        if args.output_dir:
            draw_image = posenet.draw_skel_and_kp(
                draw_image, pose_scores, keypoint_scores, keypoint_coords,
                min_pose_score=0.25, min_part_score=0.25)

            cv2.imwrite(os.path.join(args.output_dir, os.path.relpath(f, args.image_dir)), draw_image)

        if not args.notxt:
            print()
            print("Results for image: %s" % f)
            for pi in range(len(pose_scores)):
                if pose_scores[pi] == 0.:
                    break
                print('Pose #%d, score = %f' % (pi, pose_scores[pi]))
                for ki, (s, c) in enumerate(zip(keypoint_scores[pi, :], keypoint_coords[pi, :, :])):
                    print('Keypoint %s, score = %f, coord = %s' % (posenet.PART_NAMES[ki], s, c))

    print('Average FPS:', len(filenames) / (time.time() - start))


if __name__ == "__main__":
    main()

dance-1940245_640.jpg

Pose #0, score = 0.379194
Keypoint nose, score = 0.674959, coord = [101.60153786 249.57170269]
Keypoint leftEye, score = 0.782584, coord = [ 90.09467647 256.01897441]
Keypoint rightEye, score = 0.764670, coord = [ 93.39451825 240.7931246 ]
Keypoint leftEar, score = 0.314097, coord = [ 96.12480439 261.91337455]
Keypoint rightEar, score = 0.218671, coord = [ 93.97518815 227.00891266]
Keypoint leftShoulder, score = 0.442732, coord = [131.89524645 266.37186226]
Keypoint rightShoulder, score = 0.792673, coord = [124.28714146 212.55187703]
Keypoint leftElbow, score = 0.935440, coord = [188.27424116 275.69031666]
Keypoint rightElbow, score = 0.283601, coord = [160.10646086 169.00513171]
Keypoint leftWrist, score = 0.099409, coord = [148.67073327 219.6195196 ]
Keypoint rightWrist, score = 0.018433, coord = [178.70592929 142.70996855]
Keypoint leftHip, score = 0.377787, coord = [215.07498418 249.12158127]
Keypoint rightHip, score = 0.494253, coord = [208.91409478 212.95368927]
Keypoint leftKnee, score = 0.179067, coord = [257.96114013 202.6191909 ]
Keypoint rightKnee, score = 0.053346, coord = [255.18849156 166.31186308]
Keypoint leftAnkle, score = 0.007786, coord = [344.95081244 157.16637931]
Keypoint rightAnkle, score = 0.006790, coord = [306.63231759 151.46420959]
Average FPS: 0.125297575109018

4.CPUで実行するためにはmodel = model.cuda()をコメントアウト、input_image = torch.Tensor(input_image).cuda()をinput_image = torch.Tensor(input_image)に変更する

Pose #0, score = 0.379194
Keypoint nose, score = 0.674959, coord = [101.60154994 249.57166841]
Keypoint leftEye, score = 0.782583, coord = [ 90.09468179 256.01896967]
Keypoint rightEye, score = 0.764670, coord = [ 93.39452115 240.79311639]
Keypoint leftEar, score = 0.314096, coord = [ 96.12480789 261.91335979]
Keypoint rightEar, score = 0.218672, coord = [ 93.97518428 227.00892123]
Keypoint leftShoulder, score = 0.442730, coord = [131.89524065 266.37183322]
Keypoint rightShoulder, score = 0.792672, coord = [124.28711632 212.55187607]
Keypoint leftElbow, score = 0.935439, coord = [188.274202   275.69030571]
Keypoint rightElbow, score = 0.283601, coord = [160.10642533 169.00512886]
Keypoint leftWrist, score = 0.099409, coord = [148.67067502 219.61951674]
Keypoint rightWrist, score = 0.018433, coord = [178.70592736 142.70997474]
Keypoint leftHip, score = 0.377784, coord = [215.07496968 249.12155937]
Keypoint rightHip, score = 0.494253, coord = [208.91408318 212.95369784]
Keypoint leftKnee, score = 0.179067, coord = [257.9611121  202.61920137]
Keypoint rightKnee, score = 0.053347, coord = [255.18835813 166.31186499]
Keypoint leftAnkle, score = 0.007786, coord = [344.95083612 157.16632932]
Keypoint rightAnkle, score = 0.006790, coord = [306.63236774 151.46421483]
Average FPS: 1.3642639493522004

5.実行(Webカメラのデモ)
python webcam_demo.py

GPUで実行

webcam_demo.py
import torch
import cv2
import time
import argparse

import posenet

parser = argparse.ArgumentParser()
parser.add_argument('--model', type=int, default=101)
parser.add_argument('--cam_id', type=int, default=0)
parser.add_argument('--cam_width', type=int, default=1280)
parser.add_argument('--cam_height', type=int, default=720)
parser.add_argument('--scale_factor', type=float, default=0.7125)
args = parser.parse_args()


def main():
    model = posenet.load_model(args.model)
    model = model.cuda()
    output_stride = model.output_stride

    cap = cv2.VideoCapture(args.cam_id)
    cap.set(3, args.cam_width)
    cap.set(4, args.cam_height)

    start = time.time()
    frame_count = 0
    while True:
        input_image, display_image, output_scale = posenet.read_cap(
            cap, scale_factor=args.scale_factor, output_stride=output_stride)

        with torch.no_grad():
            input_image = torch.Tensor(input_image).cuda()

            heatmaps_result, offsets_result, displacement_fwd_result, displacement_bwd_result = model(input_image)

            pose_scores, keypoint_scores, keypoint_coords = posenet.decode_multiple_poses(
                heatmaps_result.squeeze(0),
                offsets_result.squeeze(0),
                displacement_fwd_result.squeeze(0),
                displacement_bwd_result.squeeze(0),
                output_stride=output_stride,
                max_pose_detections=10,
                min_pose_score=0.15)

        keypoint_coords *= output_scale

        # TODO this isn't particularly fast, use GL for drawing and display someday...
        overlay_image = posenet.draw_skel_and_kp(
            display_image, pose_scores, keypoint_scores, keypoint_coords,
            min_pose_score=0.15, min_part_score=0.1)

        cv2.imshow('posenet', overlay_image)
        frame_count += 1
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

    print('Average FPS: ', frame_count / (time.time() - start))


if __name__ == "__main__":
    main()

無題の動画 (1).gif
Average FPS: 14.213040895239454

6.CPUで実行(画像デモと同様に編集)

無題の動画 (2).gif
Average FPS: 1.140740726339934

お疲れ様でした

TensorFlowでやる場合

conda create -n posenet-tf python=3.7
conda activate posenet-tf
pip install tensorflow-gpu==1.13.1
pip install opencv-python==3.4.5.20
pip install -U protobuf~=3.20.0
pip install scipy
pip install pyyaml==5.4.1

python webcam_demo.py
python get_test_images.py
python image_demo.py --model 101 --image_dir ./images --output_dir ./output
1
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?