14
14

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

OpenCVのRGB-D Odometryを試してみた(Visual Studio 2013, C++, OpenCV)

Last updated at Posted at 2015-02-04

Odometry(オドメトリ)とは、一般的にはエンコーダや加速度センサから得られる移動変化量のことですが、RGB-Dカメラを用いたオドメトリ(Visual Odometry)といえば、カメラの移動量(回転行列と平行移動ベクトル)のことです。SLAMはこれに加えて、マップ最適化や閉ループ検出処理がないといけません。

サンプルプログラム

OpenCVのサンプルプログラムにあるrgbdodometry.cppを実行してみました。

インクルードファイル

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/contrib/contrib.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <cstdio>
#include <iostream>
#include <ctime>

ライブラリの設定

#include <opencv_lib.hpp>

名前空間

using namespace cv;
using namespace std;

Depthから3次元点群を生成する関数

static
void cvtDepth2Cloud(const Mat& depth, Mat& cloud, const Mat& cameraMatrix)
{
	const float inv_fx = 1.f / cameraMatrix.at<float>(0, 0);
	const float inv_fy = 1.f / cameraMatrix.at<float>(1, 1);
	const float ox = cameraMatrix.at<float>(0, 2);
	const float oy = cameraMatrix.at<float>(1, 2);
	cloud.create(depth.size(), CV_32FC3);
	for (int y = 0; y < cloud.rows; y++)
	{
		Point3f* cloud_ptr = (Point3f*)cloud.ptr(y);
		const float* depth_prt = (const float*)depth.ptr(y);
		for (int x = 0; x < cloud.cols; x++)
		{
			float z = depth_prt[x];
			cloud_ptr[x].x = (x - ox) * z * inv_fx;
			cloud_ptr[x].y = (y - oy) * z * inv_fy;
			cloud_ptr[x].z = z;
		}
	}
}

変換行列(4×4)で3次元点群を変換する関数
※カメラ0(Image0)からカメラ1(Image1)へ変換

template<class ImageElemType>
static void warpImage(const Mat& image, const Mat& depth,
	const Mat& Rt, const Mat& cameraMatrix, const Mat& distCoeff,
	Mat& warpedImage)
{
	const Rect rect = Rect(0, 0, image.cols, image.rows);

	vector<Point2f> points2d;
	Mat cloud, transformedCloud;

	cvtDepth2Cloud(depth, cloud, cameraMatrix);
	perspectiveTransform(cloud, transformedCloud, Rt);
	projectPoints(transformedCloud.reshape(3, 1), Mat::eye(3, 3, CV_64FC1), Mat::zeros(3, 1, CV_64FC1), cameraMatrix, distCoeff, points2d);

	Mat pointsPositions(points2d);
	pointsPositions = pointsPositions.reshape(2, image.rows);

	warpedImage.create(image.size(), image.type());
	warpedImage = Scalar::all(0);

	Mat zBuffer(image.size(), CV_32FC1, FLT_MAX);
	for (int y = 0; y < image.rows; y++)
	{
		for (int x = 0; x < image.cols; x++)
		{
			const Point3f p3d = transformedCloud.at<Point3f>(y, x);
			const Point p2d = pointsPositions.at<Point2f>(y, x);
			if (!cvIsNaN(cloud.at<Point3f>(y, x).z) && cloud.at<Point3f>(y, x).z > 0 &&
				rect.contains(p2d) && zBuffer.at<float>(p2d) > p3d.z)
			{
				warpedImage.at<ImageElemType>(p2d) = image.at<ImageElemType>(y, x);
				zBuffer.at<float>(p2d) = p3d.z;
			}
		}
	}
}

メイン関数

int main(int argc, char** argv)
{

①valsはカメラの内部パラメータ(Kinect出荷時の内部パラメータ)であり、焦点距離(fx, fy)、画像中心(cx, cy)とすると、fx = 525, fy = 525, cx = 319.5, cy = 239.5。カメラ歪(distCoeff)はなし。

	float vals[] = { 525., 0., 3.1950000000000000e+02,
		0., 525., 2.3950000000000000e+02,
		0., 0., 1. };

	const Mat cameraMatrix = Mat(3, 3, CV_32FC1, vals);
	const Mat distCoeff(1, 5, CV_32FC1, Scalar(0));

②画像セット(RGBとDepth)を2つ読み込み、

  • 剛体変換
  • 回転行列のみ
  • 平行移動ベクトルのみ
    を求めるオプション(-rbm, -r, -t)をつける。
	if (argc != 5 && argc != 6)
	{
		cout << "Format: image0 depth0 image1 depth1 [transformationType]" << endl;
		cout << "Depth file must be 16U image stored depth in mm." << endl;
		cout << "Transformation types:" << endl;
		cout << "   -rbm - rigid body motion (default)" << endl;
		cout << "   -r   - rotation rotation only" << endl;
		cout << "   -t   - translation only" << endl;
		return -1;
	}

	Mat colorImage0 = imread(argv[1]);
	Mat depth0 = imread(argv[2], -1);

	Mat colorImage1 = imread(argv[3]);
	Mat depth1 = imread(argv[4], -1);

	if (colorImage0.empty() || depth0.empty() || colorImage1.empty() || depth1.empty())
	{
		cout << "Data (rgb or depth images) is empty.";
		return -1;
	}

	int transformationType = RIGID_BODY_MOTION;
	if (argc == 6)
	{
		string ttype = argv[5];
		if (ttype == "-rbm")
		{
			transformationType = RIGID_BODY_MOTION;
		}
		else if (ttype == "-r")
		{
			transformationType = ROTATION;
		}
		else if (ttype == "-t")
		{
			transformationType = TRANSLATION;
		}
		else
		{
			cout << "Unsupported transformation type." << endl;
			return -1;
		}
	}

③カラー画像はグレースケールに変換し、Depthはメートルに変換する。ここでは、0~4mのDepthデータのみを用いている。

	Mat grayImage0, grayImage1, depthFlt0, depthFlt1/*in meters*/;
	cvtColor(colorImage0, grayImage0, COLOR_BGR2GRAY);
	cvtColor(colorImage1, grayImage1, COLOR_BGR2GRAY);
	depth0.convertTo(depthFlt0, CV_32FC1, 1. / 1000);
	depth1.convertTo(depthFlt1, CV_32FC1, 1. / 1000);

④TickMeter tm;は処理時間を測る。tm.start();からtm.stop();までの時間を測ることができる。tm.getTimeMilli()で時間[ms]を表示する。あとは、変換行列を求めるための設定(iterCounts, minGradMagnitudes)。

	TickMeter tm;
	Mat Rt;

	vector<int> iterCounts(4);
	iterCounts[0] = 7;
	iterCounts[1] = 7;
	iterCounts[2] = 7;
	iterCounts[3] = 10;

	vector<float> minGradMagnitudes(4);
	minGradMagnitudes[0] = 12;
	minGradMagnitudes[1] = 5;
	minGradMagnitudes[2] = 3;
	minGradMagnitudes[3] = 1;

	const float minDepth = 0.f; //in meters
	const float maxDepth = 4.f; //in meters
	const float maxDepthDiff = 0.07f; //in meters

⑤オドメトリを推定する関数(Direct Method)と変換行列の表示

	tm.start();
	bool isFound = cv::RGBDOdometry(Rt, Mat(),
		grayImage0, depthFlt0, Mat(),
		grayImage1, depthFlt1, Mat(),
		cameraMatrix, minDepth, maxDepth, maxDepthDiff,
		iterCounts, minGradMagnitudes, transformationType);
	tm.stop();

	cout << "Rt = " << Rt << endl;
	cout << "Time = " << tm.getTimeSec() << " sec." << endl;

	if (!isFound)
	{
		cout << "Rigid body motion cann't be estimated for given RGBD data." << endl;
		return -1;
	}

⑥Image0をImage1に変換した画像warpedImage0を表示して終了。

	Mat warpedImage0;
	warpImage<Point3_<uchar> >(colorImage0, depthFlt0, Rt, cameraMatrix, distCoeff, warpedImage0);

	imshow("image0", colorImage0);
	imshow("warped_image0", warpedImage0);
	imshow("image1", colorImage1);
	waitKey();

	return 0;
}

shuho.png

サンプルの画像セットはOpenCVの中にあります。

\opencv249\sources\samples\cpp\rgbdodometry\

PPLで並列化したソースコードをgithubにあげます。速度は全然変わりませんw 実行する際、Debuggingの設定(コマンドラインから引数を与える)を行ってください。

C:\opencv249\sources\samples\cpp\rgbdodometry\image_00000.png C:\opencv249\sources\samples\cpp\rgbdodometry\depth_00000.png C:\opencv249\sources\samples\cpp\rgbdodometry\image_00002.png C:\opencv249\sources\samples\cpp\rgbdodometry\depth_00002.png -rbm

動作環境

  • Windows8.1(RAM 8GB, 2 cores @ 2.1GHz)
  • OpenCV2.4.9
  • Visual Studio 2013

処理時間

  • rgbdodometry
    console.png

  • pplで並列化(2重ループくらいじゃ速度は変わりません)
    console2.png

14
14
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
14
14

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?