2
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

学習済みモデルを用いて特徴量化(Azure Databricks)

Last updated at Posted at 2022-04-27

はじめに

これやっていきまーす

開発環境

image.png

実装

1.ライブラリをインストール

%pip install tensorflow

2.ライブラリをインポート

import pandas as pd
from PIL import Image
import numpy as np
import io

import tensorflow as tf
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input
from tensorflow.keras.preprocessing.image import img_to_array

from pyspark.sql.functions import col, pandas_udf, PandasUDFType

3.flowers datasetを表示

%fs ls /databricks-datasets/flower_photos

image.png

4.flowers datasetの読み込み

images = spark.read.format("binaryFile") \
  .option("pathGlobFilter", "*.jpg") \
  .option("recursiveFileLookup", "true") \
  .load("/databricks-datasets/flower_photos")

display(images.limit(5))

image.png

5.モデルの準備(ResNet50)

model = ResNet50(include_top=False)
model.summary()  # verify that the top layer is removed

image.png

bc_model_weights = sc.broadcast(model.get_weights())

def model_fn():
  """
  Returns a ResNet50 model with top layer removed and broadcasted pretrained weights.
  """
  model = ResNet50(weights=None, include_top=False)
  model.set_weights(bc_model_weights.value)
  return model

6.特徴量化

def preprocess(content):
  """
  Preprocesses raw image bytes for prediction.
  """
  img = Image.open(io.BytesIO(content)).resize([224, 224])
  arr = img_to_array(img)
  return preprocess_input(arr)

def featurize_series(model, content_series):
  """
  Featurize a pd.Series of raw images using the input model.
  :return: a pd.Series of image features
  """
  input = np.stack(content_series.map(preprocess))
  preds = model.predict(input)
  # For some layers, output features will be multi-dimensional tensors.
  # We flatten the feature tensors to vectors for easier storage in Spark DataFrames.
  output = [p.flatten() for p in preds]
  return pd.Series(output)
@pandas_udf('array<float>', PandasUDFType.SCALAR_ITER)
def featurize_udf(content_series_iter):
  '''
  This method is a Scalar Iterator pandas UDF wrapping our featurization function.
  The decorator specifies that this returns a Spark DataFrame column of type ArrayType(FloatType).
  
  :param content_series_iter: This argument is an iterator over batches of data, where each batch
                              is a pandas Series of image data.
  '''
  # With Scalar Iterator pandas UDFs, we can load the model once and then re-use it
  # for multiple data batches.  This amortizes the overhead of loading big models.
  model = model_fn()
  for content_series in content_series_iter:
    yield featurize_series(model, content_series)
/databricks/spark/python/pyspark/sql/pandas/functions.py:386: UserWarning: In Python 3.6+ and Spark 3.0+, it is preferred to specify type hints for pandas UDF instead of specifying pandas UDF type which will be deprecated in the future releases. See SPARK-28264 for more details.
  warnings.warn(
# Pandas UDFs on large records (e.g., very large images) can run into Out Of Memory (OOM) errors.
# If you hit such errors in the cell below, try reducing the Arrow batch size via `maxRecordsPerBatch`.
spark.conf.set("spark.sql.execution.arrow.maxRecordsPerBatch", "1024")
# We can now run featurization on our entire Spark DataFrame.
# NOTE: This can take a long time (about 10 minutes) since it applies a large model to the full dataset.
features_df = images.repartition(16).select(col("path"), featurize_udf("content").alias("features"))
features_df.write.mode("overwrite").parquet("dbfs:/ml/tmp/flower_photos_features")

7.この特徴量を用いて、新しいモデルを作って花の分類とかやってみよう。logistic regressionのサンプルとか見てね。

お疲れ様でした。

2
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
2
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?