2
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

[TimeseriesGenerator] LSTM Many to Manyに対応した、時系列データ加工

Last updated at Posted at 2021-02-02

過去N点のデータを入力とし、未来N点のデータを予測(出力)とする場合のデータを生成します。(※過去と未来のステップ数が等しい場合のみ有効です。)

関数


import pandas as pd
import numpy as np
from keras.preprocessing.sequence import TimeseriesGenerator


def create_timeseries(data, lookback):
    generator = TimeseriesGenerator(data, data, length=lookback, batch_size=1)

    X_li, y_li = list(), list()
    for i in range(len(generator))[:-lookback+1]:  # lookback分、x2がnullになるため除く
      x, y = generator[i]
      x2, y2 = generator[i + lookback]
      X_li.append(x)
      y_li.append(x2)

    re_X = np.concatenate(X_li)
    re_y = np.concatenate(y_li)
    return re_X, re_y
# 実行
data = np.arange(100).reshape(-1, 4)
print(data.shape)
print(data[:5])

X, y = create_timeseries(data=data, lookback=3)

print(X[0])
print(y[0])
print("=====")
print(X[-1])
print(y[-1])

# 出力
(25, 4)
[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]
 [12 13 14 15]
 [16 17 18 19]]
0 [[[ 0  1  2  3]
  [ 4  5  6  7]
  [ 8  9 10 11]]] shape=(1, 3, 4)
=> [[[12 13 14 15]
  [16 17 18 19]
  [20 21 22 23]]] shape=(1, 3, 4)
=====================
[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]]
[[12 13 14 15]
 [16 17 18 19]
 [20 21 22 23]]
=====
[[72 73 74 75]
 [76 77 78 79]
 [80 81 82 83]]
[[84 85 86 87]
 [88 89 90 91]
 [92 93 94 95]]

解説

準備

import pandas as pd
import numpy as np
from keras.preprocessing.sequence import TimeseriesGenerator

# step数は3に設定
lookback = 3

使うデータ

data = np.arange(100).reshape(-1, 4)
print(data.shape)
data[:5]

image.png

Generator生成

generator = TimeseriesGenerator(data, data, length=lookback, batch_size=1)

生成されるデータ

# lookup分のx、次の値がy
for x, y in generator:
  print('%s => %s' % (x, y))

image.png

生成されるデータからLSTM用に抽出

X_li, y_li = list(), list()
for i in range(len(generator))[:-lookback+1]:  # lookback分、x2がnullになるため除く
  x, y = generator[i]
  x2, y2 = generator[i + lookback]
  X_li.append(x)
  y_li.append(x2)
  print(i, x, "shape={}".format(x.shape))
  print("=>", x2, "shape={}".format(x2.shape))
  print("=====================")

image.png

抽出したデータを結合

re_X = np.concatenate(X_li)
re_y = np.concatenate(y_li)

# re_X.shape, re_y.shape => (19, 3, 4), (19, 3, 4)

完成したデータ


for x, y in zip(re_X, re_y):
  print(x)
  print("=>", x2)
  print("=====================")

image.png

参考

2
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
2
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?