1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

読み込んだテキストファイルの固有表現をラベルに置き換える(GiNZA使用)

Posted at

それなりに苦戦したので一応載せておきます。
もっと良いやり方があるかもしれません。
私と同じ初学者の方は参考にしてください。

環境はpython3.6.9とUbuntu 18.04.4です。

change_NER.py
# coding:utf-8
import spacy

with open('input.txt','r') as f:
  nlp = spacy.load('ja_ginza')
  data = f.read()
  doc = nlp(data)

with open('output.txt','w') as f:

    text = list(data)                               # 1文字ずつリストに格納
    entity = [ent.label_ for ent in doc.ents]       # 固有表現のラベル
    start = [ent.start_char for ent in doc.ents]    # 何文字目から固有表現か
    end = [ent.end_char for ent in doc.ents]        # 何文字目まで固有表現か
    num = 0                                        
    stop = False

    for i in range(len(text)):
        if i == start[num]:
            f.write(entity[num])
            if num < len(start) - 1: # out of rangeの防止
                num += 1
            stop = True

        elif stop == True:
            if i < end[num-1]: # 固有表現の文字数分だけ
                continue    # iを消費する
            elif i == end[num-1]:
                stop = False
                f.write(text[i])

        else:
            f.write(text[i])
1
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?