11
5

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

【Ubuntu】【Python】dlibとOpenCVの顔検出比べ

Last updated at Posted at 2016-10-11

dlibとOpenCVの顔検出比較をしてみました。
時々見かける動画ですが、自分でもやってみたかったので、ちょっとお試し。

dlibのほうが向きとかに対する精度がよくて、
OpenCVのほうが早い感じ(Adaboostのおかげ?
業務で使用することになったら、もっと詳細に調査予定。

Linuxのほうがdlibの導入が簡単なので、Ubutntuでやってます。
Windowsでもdlibいれれば同じソースで動くはず。。。?

動画は以下。
赤色がOpenCVによる検出で、青色がdlibによる検出です。
https://www.youtube.com/watch?v=SQTXLfwlPjQ
【Ubuntu】【Python】dlibとOpenCVの顔検出比べ

ソースコードは以下。
動作させるには、pyファイルと同じディレクトリにOpenCVの学習済みデータを
配置する必要があります。
→./data/haarcascades/haarcascade_frontalface_alt.xml


#!/usr/bin/env python
# -*- coding: utf-8 -*-

'''
face_landmark_detector.py.

Usage:
  face_landmark_detector.py [<video source>] [<resize rate>]
'''

import sys
import dlib
import cv2
import time
import copy

try:
    fn = sys.argv[1]
    if fn.isdigit() == True:
        fn = int(fn)
except:
    fn = 0

try:
    resize_rate = sys.argv[2]
    resize_rate = int(resize_rate)
except:
    resize_rate = 1

# Dlib
detector = dlib.get_frontal_face_detector()

# OpenCV
cascade_fn = "./data/haarcascades/haarcascade_frontalface_alt.xml"
cascade = cv2.CascadeClassifier(cascade_fn)

video_input = cv2.VideoCapture(fn)

total_frame_count = 0
face_detection_frame_count_dlib = 0
face_detection_frame_count_opencv = 0

while(video_input.isOpened() == True):
    total_frame_count += 1

    ret, frame = video_input.read()
    temp_frame = copy.deepcopy(frame)

    # 処理負荷軽減のための対象フレーム縮小(引数指定時)
    height, width = frame.shape[:2]
    temp_frame = cv2.resize(frame, (int(width/resize_rate), int(height/resize_rate)))

    # 顔検出(dlib)
    start = time.time()
    dets = detector(temp_frame, 1)
    elapsed_time_dlib = time.time() - start

    if len(dets) > 0:
        face_detection_frame_count_dlib += 1

    # 検出結果描画(dlib)
    for k, d in enumerate(dets):
        cv2.rectangle(frame, (int(d.left() * resize_rate), int(d.top() * resize_rate)), \
            (int(d.right() * resize_rate), int(d.bottom() * resize_rate)), (255, 0, 0), -1)

    # 顔検出(opencv)
    gray_image = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2GRAY)
    gray_image = cv2.equalizeHist(gray_image)

    start = time.time()
    rects = cascade.detectMultiScale(gray_image, scaleFactor=1.3, minNeighbors=4, minSize=(30, 30), flags=cv2.CASCADE_SCALE_IMAGE)
    if len(rects) == 0:
        rects = []
    else:
        rects[:,2:] += rects[:,:2]
    elapsed_time_opencv = time.time() - start


    if len(rects) > 0:
        face_detection_frame_count_opencv += 1

    # 検出結果描画(OpenCV)
    for x1, y1, x2, y2 in rects:
        cv2.putText(frame, "OpenCV", (int(x1 * resize_rate), int(y1 * resize_rate)), cv2.FONT_HERSHEY_PLAIN, 2.0, (0, 0, 255), thickness = 2)
        cv2.rectangle(frame, (int(x1 * resize_rate), int(y1 * resize_rate)), (int(x2 * resize_rate), int(y2 * resize_rate)), (0, 0, 255), -1)
    # 検出結果描画(dlib)
    for k, d in enumerate(dets):
        cv2.putText(frame, "Dlib", (int(d.left() * resize_rate), int(d.top() * resize_rate)), cv2.FONT_HERSHEY_PLAIN, 2.0, (255, 0, 0), thickness = 2)
        cv2.rectangle(frame, (int(d.left() * resize_rate), int(d.top() * resize_rate)), \
            (int(d.right() * resize_rate), int(d.bottom() * resize_rate)), (255, 0, 0), 2)

    print ("face detect(dlib) processing time:{0}".format(elapsed_time_dlib)) + "[sec]"
    print ("face detect(opencv) processing time:{0}".format(elapsed_time_opencv)) + "[sec]"
    print ("face detect(dlib) success count:" + '%06d' % face_detection_frame_count_dlib + "/" + '%06d' % total_frame_count)
    print ("face detect(opencv) success count:" + '%06d' % face_detection_frame_count_opencv + "/" + '%06d' % total_frame_count)
    print

    cv2.imshow('face detector vs', frame)

    c = cv2.waitKey(50) & 0xFF

    if c==27: # ESC
        break

video_input.release()
cv2.destroyAllWindows()

以上。

11
5
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
11
5

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?