0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

テスト用の投稿(2)

Posted at

テスト用の投稿の2回目。今度はソースコードを記載してみる。

ex5.py
# -*- coding: utf-8 -*-
# Authors : 
# ==============================================================================
import numpy as np
import pandas as pd
import pymap3d as pm
from netCDF4 import Dataset
#import plotly.graph_objs as go
#from plotly.offline import plot
import matplotlib.pyplot as plt
import matplotlib.ticker as ptick
from matplotlib.collections import LineCollection


def Etopo(lon_area, lat_area, resolution):
    ### Input
    # resolution: resolution of topography for both of longitude and latitude [deg]
    # (Original resolution is 0.0167 deg)
    # lon_area and lat_area: the region of the map which you want like [100, 130], [20, 25]
    ###

    ### Output
    # Mesh type longitude, latitude, and topography data
    ###

    # Read NetCDF data
    # https://www.ngdc.noaa.gov/mgg/global/
    data = Dataset("./data/ETOPO1_Ice_g_gdal.grd", "r")

    # Get data
    lon_range = data.variables['x_range'][:]
    lat_range = data.variables['y_range'][:]
    alt_range = data.variables['z_range'][:]
    spacing = data.variables['spacing'][:]
    dimension = data.variables['dimension'][:]
    z = data.variables['z'][:]

    lon_num = dimension[0]
    lat_num = dimension[1]

    # Prepare array
    lon_input = np.zeros(lon_num); lat_input = np.zeros(lat_num)
    for i in range(lon_num):
        lon_input[i] = lon_range[0] + i * spacing[0]

    for i in range(lat_num):
        lat_input[i] = lat_range[0] + i * spacing[1]

    # Create 2D array
    lon, lat = np.meshgrid(lon_input, lat_input)

    # Convert 2D array from 1D array for z value
    alt = np.reshape(z, (lat_num, lon_num))

    # Skip the data for resolution
    if ((resolution < spacing[0]) | (resolution < spacing[1])):
        print('Set the highest resolution')
    else:
        skip = int(resolution/spacing[0])
        lon = lon[::skip,::skip]
        lat = lat[::skip,::skip]
        alt = alt[::skip,::skip]

    alt = alt[::-1]

    # Select the range of map
    range1 = np.where((lon>=lon_area[0]) & (lon<=lon_area[1]))
    lon = lon[range1]; lat = lat[range1]; alt = alt[range1]
    range2 = np.where((lat>=lat_area[0]) & (lat<=lat_area[1]))
    lon = lon[range2]; lat = lat[range2]; alt = alt[range2]
    alt = np.clip(alt,-5,2000)
    #alt[alt < 0] = -1000
    

    # Convert 2D again
    lon_num = len(np.unique(lon))
    lat_num = len(np.unique(lat))
    lon = np.reshape(lon, (lat_num, lon_num))
    lat = np.reshape(lat, (lat_num, lon_num))
    alt = np.reshape(alt, (lat_num, lon_num))
    
    return lon, lat, alt


def lines_SS_POI(df_SS, df_POI):
    end_pos = df_SS.loc[:,['lon','lat']].values.tolist()
    start_pos = df_POI.loc[:,['lon','lat']].values.tolist()*len(end_pos)
    
    lines = [ [sp,ep] for sp,ep in zip(start_pos, end_pos)]
    lc = LineCollection(lines, colors='red')
    return lc


def plot_map(ax, ss_idx, lon_topo, lat_topo, alt, df_SS, df_POI):
    alt_tmp = alt.copy()
    alt_tmp[alt < 0] = -1000
    
    cont = ax.contour(lon_topo, lat_topo, alt_tmp, levels=10, linewidths=.5, colors=['black'])
    ax.pcolormesh(lon_topo, lat_topo, alt_tmp, cmap='YlGn')
    ax.plot(df_SS['lon'], df_SS['lat'], 'D', color='red', ms=10)
    ax.plot(df_POI['lon'], df_POI['lat'], 'o', color='blue', ms=10)
    end_pos = df_SS.loc[:,['lon','lat']].values.tolist()
    start_pos = df_POI.loc[:,['lon','lat']].values.tolist()*len(end_pos)

    yy = (start_pos[ss_idx][1],end_pos[ss_idx][1])
    xx = (start_pos[ss_idx][0],end_pos[ss_idx][0])
    ax.plot(xx,yy,'r')
    

def pol_cut(df_SS, df_POI, az_width_oneside, rg_max_km):
    [ss_lon, ss_lat, ss_alt] = df_SS.loc[ss_idx,['lon','lat','alt']]
    [poi_lon, poi_lat, poi_alt] = df_POI.loc[0,['lon','lat','alt']]
    az_t, el_t, rg_t = pm.geodetic2aer(poi_lat, poi_lon, poi_alt, ss_lat, ss_lon, ss_alt)
    az_beg = az_t - az_width_oneside
    az_end = az_t + az_width_oneside
    
    az,el,rg = pm.geodetic2aer(lat_topo, lon_topo, alt, ss_lat, ss_lon, ss_alt)
    az_1d = az.reshape(-1)
    el_1d = el.reshape(-1)
    rg_1d = rg.reshape(-1)
    alt_1d = alt.reshape(-1)        
        
    df_pol = pd.DataFrame(data={"az":az_1d,"el":el_1d, "rg":rg_1d, "alt":alt_1d})

    if (az_beg > 0) & (az_end < 360):
        df_pol_cut = df_pol[((az_beg < df_pol['az'] ) & (df_pol['az'] < az_end)) &
                            (df_pol['rg'] < rg_max_km*1000)]
    elif az_end > 360 :
        df_pol_cut = df_pol[(((az_beg < df_pol['az'] ) & (df_pol['az'] < 360)) |
                             ((0 < df_pol['az'] ) & (df_pol['az'] < az_end-360))) &
                            (df_pol['rg'] < rg_max_km*1000)]
    elif az_beg < 0 :
        df_pol_cut = df_pol[(((0 < df_pol['az'] ) & (df_pol['az'] < az_end)) |
                             ((az_beg+360 < df_pol['az'] ) & (df_pol['az'] < 360))) &
                            (df_pol['rg'] < rg_max_km*1000)]
    return df_pol_cut, rg_t


##########################################################################################################
# main
##########################################################################################################
if __name__ == '__main__':

    plt.rcParams["font.size"] = 24

    #lon_area = [125., 150.]
    #lat_area = [25., 50.]
    #resolution = 0.05
    
    resolution = 0.01
    aspect_scaling = 1.2
    lat_beg = 22.
    lat_end = lat_beg + 28.
    lon_beg = 123.
    lon_end = lon_beg + (lat_end-lat_beg)*0.7694*aspect_scaling
    
    lon_area = [lon_beg, lon_end]
    lat_area = [lat_beg, lat_end]

    # Get mesh-shape topography data
    lon_topo, lat_topo, alt = Etopo(lon_area, lat_area, resolution)

    df_SS = pd.read_csv('./data/SS_utf8.csv')
    df_POI = pd.read_csv('./data/POI_utf8.csv')
    lc = lines_SS_POI(df_SS, df_POI)

    rg_max_km = 300
    for ss_idx in range(17):
        az_width_oneside = [15, 30]
        df_pol_cut1, rg_t = pol_cut(df_SS, df_POI, az_width_oneside[0], rg_max_km)
        df_pol_cut2, rg_t = pol_cut(df_SS, df_POI, az_width_oneside[1], rg_max_km)

        ###################################################
        figsize_px = np.array([3600, 1800])
        dpi = 100
        figsize_inch = figsize_px / dpi
        fig, ax = plt.subplots(nrows=2,ncols=2,figsize=figsize_inch, dpi=dpi)
        fig.subplots_adjust(wspace=0.1, hspace=0.1,left=0.05, right=0.95, bottom=0.05, top=0.95)
        
        plot_map(ax[0,0], ss_idx, lon_topo, lat_topo, alt, df_SS, df_POI)
        plot_map(ax[1,0], ss_idx, lon_topo, lat_topo, alt, df_SS, df_POI)
        [ss_lon, ss_lat, ss_alt] = df_SS.loc[ss_idx,['lon','lat','alt']]
        ax[1,0].set_xlim([ss_lon-1.5, ss_lon+0.5])
        ax[1,0].set_ylim([ss_lat-0.5, ss_lat+1])
    
        #df_pol_cut.hist(bins=100)
        df_pol_cut2.plot.scatter(ax=ax[0,1], x='rg',y='el', alpha=0.5, c='blue')
        df_pol_cut1.plot.scatter(ax=ax[0,1], x='rg',y='el', alpha=0.5, c='red')
        ax[0,1].set_xlim([0, rg_max_km*1000])        
        ax[0,1].set_ylim([-2, 0.5])
        ax[0,1].set_yticks([-1, 0])
        ax[0,1].xaxis.set_major_formatter(ptick.ScalarFormatter(useMathText=True))
        ax[0,1].ticklabel_format(style="sci", axis="x", scilimits=(3,3))
        ax[0,1].grid(which = "major", axis = "y", color = "black", alpha = 0.8,linestyle = "--", linewidth = 1)
        ax[0,1].set_xlabel("距離 [m]",fontname="MS Gothic")
        ax[0,1].set_ylabel("仰角 [度]",fontname="MS Gothic")
        
        df_pol_cut2.plot.scatter(ax=ax[1,1], x='rg',y='alt', alpha=0.5, c='blue')
        df_pol_cut1.plot.scatter(ax=ax[1,1], x='rg',y='alt', alpha=0.5, c='red')        
        ax[1,1].set_xlim([0, rg_max_km*1000])
        ax[1,1].set_ylim([-5, 2000])
        ax[1,1].xaxis.set_major_formatter(ptick.ScalarFormatter(useMathText=True))
        ax[1,1].ticklabel_format(style="sci", axis="x", scilimits=(3,3))
        ax[1,1].set_xlabel("距離 [m]",fontname="MS Gothic")
        ax[1,1].set_ylabel("高度 [m]",fontname="MS Gothic")

        fig.suptitle(str(df_SS.loc[ss_idx,'loc_name']) +
                     '  方位幅(片側)=' +str(az_width_oneside) +'[度]'+
                     '  標高=' +str(df_SS.loc[ss_idx,'alt']) +'[m]'+
                     '  距離(POIまで)='+str(int(rg_t/1000))+'[km]',
                     fontname="MS Gothic", size=28)
        fig.savefig('fig_ss'+str(ss_idx)+'.png')

さて、どうだろうか。

0
0
1

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?