0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

Minkowskiの不等式(ミンコフスキーの不等式)とその証明

Last updated at Posted at 2021-02-09

#Minkowskiの不等式

  • 主張

$1 \leq p \leq \infty$とする. このとき $f, g \in L^p$に対して以下が成り立つ.
$$\|f + g\|_{L^p} \leq \|f\| _{L^p} + \|g\| _{L^p}$$

これは $L^p$ノルムへの三角不等式の一般化といえる.

  • 証明

まず $f, g \in L^p$であるとき $f + g \in L^p$であることを示す必要があるが, これは $|f + g|^p \leq (|f| + |g|)^p \leq 2^{p - 1}(|f|^p + |g|^p)$より従う.

  • p = 1のとき

    三角不等式より
    $$\int_\Omega |f(x) + g(x)| dx \leq \int_\Omega |f(x)| dx + \int_\Omega |g(x)| dx$$

  • p = $\infty$のとき

    $L^\infty$ノルムの定義より明らか.

  • $1 < p < \infty$のとき

    $\frac{1}{p} + \frac{1}{q} = 1$となる $q$をとると$(p - 1)q = p$より,

\begin{align*}
\int_\Omega |f(x) + g(x)|^p dx &= \int_\Omega |f(x) + g(x)|^{p - 1}|f(x) + g(x)| dx \\
&\leq \int_\Omega |f(x) + g(x)|^{p - 1}|f(x)| dx + \int_\Omega |f(x) + g(x)|^{p - 1}|g(x)| dx \\
&\leq \left( \int_\Omega |f(x) + g(x)|^{(p - 1)q} dx \right)^{\frac{1}{q}}\left( \int_\Omega |f(x)|^p dx \right)^{\frac{1}{p}} + \left( \int_\Omega |f(x) + g(x)|^{(p - 1)q} dx \right)^{\frac{1}{q}}\left( \int_\Omega |g(x)|^p dx \right)^{\frac{1}{p}}\hspace{15pt} (\because \text{Hölderの不等式}) \\
&\leq \left( \int_\Omega |f(x) + g(x)|^p dx \right)^{\frac{1}{q}}\left( \|f\|_{L^p} + \|g\|_{L^p} \right)
\end{align*}

となり, 両辺を $( \int_\Omega |f(x) + g(x)|^p dx)^{\frac{1}{q}}$で割ることで示すべき不等式,
$$\|f + g\| _{L^p} = \left( \int _\Omega |f(x) + g(x)|^p dx \right)^{1 - \frac{1}{q}} \leq \|f\| _{L^p} + \|g\| _{L^p}$$
が得られる.

#一般化
Minkowskiの不等式は一般化でき, 以下が成り立つ. $(\Omega_1, \mu _1), (\Omega_2, \mu _2)$を測度空間として$1 \leq p \leq \infty$と $\Omega _1 \times \Omega _2$上の可測関数$f(x, y)$に対して,
$$\left( \int _{\Omega _2} \left\{ \int _{\Omega _1} |f(x, y)| d\mu _1 \right\}^p d\mu _2 \right)^\frac{1}{p} \leq \left( \int _{\Omega _1} \left\{ \int _{\Omega _2} |f(x, y)|^p d\mu _2 \right\}^\frac{1}{p} d\mu _1 \right)$$
となる.

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?