"""
## 48. 名詞から根へのパスの抽出[Permalink](https://nlp100.github.io/ja/ch05.html#48-名詞から根へのパスの抽出)
文中のすべての名詞を含む文節に対し,その文節から構文木の根に至るパスを抽出せよ. ただし,構文木上のパスは以下の仕様を満たすものとする.
- 各文節は(表層形の)形態素列で表現する
- パスの開始文節から終了文節に至るまで,各文節の表現を”` -> `“で連結する
「ジョン・マッカーシーはAIに関する最初の会議で人工知能という用語を作り出した。」という例文を考える. CaboChaを係り受け解析に用いた場合,次のような出力が得られると思われる.
ジョンマッカーシーは -> 作り出した
AIに関する -> 最初の -> 会議で -> 作り出した
最初の -> 会議で -> 作り出した
会議で -> 作り出した
人工知能という -> 用語を -> 作り出した
用語を -> 作り出した
KNPを係り受け解析に用いた場合,次のような出力が得られると思われる.
ジョンマッカーシーは -> 作り出した
AIに -> 関する -> 会議で -> 作り出した
会議で -> 作り出した
人工知能と -> いう -> 用語を -> 作り出した
用語を -> 作り出した
"""
from collections import defaultdict
from typing import List
def read_file(fpath: str) -> List[List[str]]:
"""Get clear format of parsed sentences.
Args:
fpath (str): File path.
Returns:
List[List[str]]: List of sentences, and each sentence contains a word list.
e.g. result[1]:
['* 0 2D 0/0 -0.764522',
'\u3000\t記号,空白,*,*,*,*,\u3000,\u3000,\u3000',
'* 1 2D 0/1 -0.764522',
'吾輩\t名詞,代名詞,一般,*,*,*,吾輩,ワガハイ,ワガハイ',
'は\t助詞,係助詞,*,*,*,*,は,ハ,ワ',
'* 2 -1D 0/2 0.000000',
'猫\t名詞,一般,*,*,*,*,猫,ネコ,ネコ',
'で\t助動詞,*,*,*,特殊・ダ,連用形,だ,デ,デ',
'ある\t助動詞,*,*,*,五段・ラ行アル,基本形,ある,アル,アル',
'。\t記号,句点,*,*,*,*,。,。,。']
"""
with open(fpath, mode="rt", encoding="utf-8") as f:
sentences = f.read().split("EOS\n")
return [sent.strip().split("\n") for sent in sentences if sent.strip() != ""]
class Morph:
"""Morph information for each token.
Args:
data (dict): A dictionary contains necessary information.
Attributes:
surface (str): 表層形(surface)
base (str): 基本形(base)
pos (str): 品詞(base)
pos1 (str): 品詞細分類1(pos1)
"""
def __init__(self, data):
self.surface = data["surface"]
self.base = data["base"]
self.pos = data["pos"]
self.pos1 = data["pos1"]
def __repr__(self):
return f"Morph({self.surface})"
def __str__(self):
return "surface[{}]\tbase[{}]\tpos[{}]\tpos1[{}]".format(
self.surface, self.base, self.pos, self.pos1
)
class Chunk:
"""Containing information for Clause/phrase.
Args:
data (dict): A dictionary contains necessary information.
Attributes:
chunk_id (str): The number of clause chunk (文節番号).
morphs List[Morph]: Morph (形態素) list.
dst (str): The index of dependency target (係り先文節インデックス番号).
srcs (List[str]): The index list of dependency source. (係り元文節インデックス番号).
"""
def __init__(self, chunk_id, dst):
self.id = chunk_id
self.morphs = []
self.dst = dst
self.srcs = []
def __repr__(self):
return "Chunk( id: {}, dst: {}, srcs: {}, morphs: {} )".format(
self.id, self.dst, self.srcs, self.morphs
)
def get_surface(self) -> str:
"""Concatenate morph surfaces in a chink.
Args:
chunk (Chunk): e.g. Chunk( id: 0, dst: 5, srcs: [], morphs: [Morph(吾輩), Morph(は)]
Return:
e.g. '吾輩は'
"""
morphs = self.morphs
res = ""
for morph in morphs:
if morph.pos != "記号":
res += morph.surface
return res
def validate_pos(self, pos: str) -> bool:
"""Return Ture if '名詞' or '動詞' in chunk's morphs. Otherwise, return False."""
morphs = self.morphs
return any([morph.pos == pos for morph in morphs])
def convert_sent_to_chunks(sent: List[str]) -> List[Morph]:
"""Extract word and convert to morph.
Args:
sent (List[str]): A sentence contains a word list.
e.g. sent:
['* 0 1D 0/1 0.000000',
'吾輩\t名詞,代名詞,一般,*,*,*,吾輩,ワガハイ,ワガハイ',
'は\t助詞,係助詞,*,*,*,*,は,ハ,ワ',
'* 1 -1D 0/2 0.000000',
'猫\t名詞,一般,*,*,*,*,猫,ネコ,ネコ',
'で\t助動詞,*,*,*,特殊・ダ,連用形,だ,デ,デ',
'ある\t助動詞,*,*,*,五段・ラ行アル,基本形,ある,アル,アル',
'。\t記号,句点,*,*,*,*,。,。,。']
Parsing format:
e.g. "* 0 1D 0/1 0.000000"
| カラム | 意味 |
| :----: | :----------------------------------------------------------- |
| 1 | 先頭カラムは`*`。係り受け解析結果であることを示す。 |
| 2 | 文節番号(0から始まる整数) |
| 3 | 係り先番号+`D` |
| 4 | 主辞/機能語の位置と任意の個数の素性列 |
| 5 | 係り関係のスコア。係りやすさの度合で、一般に大きな値ほど係りやすい。 |
Returns:
List[Chunk]: List of chunks.
"""
chunks = []
chunk = None
srcs = defaultdict(list)
for i, word in enumerate(sent):
if word[0] == "*":
# Add chunk to chunks
if chunk is not None:
chunks.append(chunk)
# eNw Chunk beggin
chunk_id = word.split(" ")[1]
dst = word.split(" ")[2].rstrip("D")
chunk = Chunk(chunk_id, dst)
srcs[dst].append(chunk_id) # Add target->source to mapping list
else: # Add Morch to chunk.morphs
features = word.split(",")
dic = {
"surface": features[0].split("\t")[0],
"base": features[6],
"pos": features[0].split("\t")[1],
"pos1": features[1],
}
chunk.morphs.append(Morph(dic))
if i == len(sent) - 1: # Add the last chunk
chunks.append(chunk)
# Add srcs to each chunk
for chunk in chunks:
chunk.srcs = list(srcs[chunk.id])
return chunks
def get_path(chunks: List[Chunk]) -> List[List[str]]:
"""Get all paths in one sentence.
Terms:
- 述語 (predicate)
- 項 (argument)
- 格 (case)
Notice:
- Chunk.morphsは「サ変接続名詞」と「を(助詞)」が持っている
- Chunk.srcsはは「動詞」が持っている
Args:
chunks (List[Chunk]): A sentence contains many chunks.
e.g. [Chunk( id: 0, dst: 5, srcs: [], morphs: [Morph(吾輩), Morph(は)] ),
Chunk( id: 1, dst: 2, srcs: [], morphs: [Morph(ここ), Morph(で)] ),
Chunk( id: 2, dst: 3, srcs: ['1'], morphs: [Morph(始め), Morph(て)] ),
Chunk( id: 3, dst: 4, srcs: ['2'], morphs: [Morph(人間), Morph(という)] ),
Chunk( id: 4, dst: 5, srcs: ['3'], morphs: [Morph(もの), Morph(を)] ),
Chunk( id: 5, dst: -1, srcs: ['0', '4'], morphs: [Morph(見), Morph(た), Morph(。)] )]
Returns:
List[List[str]]: [['どこで', '生れたか', 'つかぬ'], ['見当が', 'つかぬ']]
"""
paths = []
for chunk in chunks:
# Skip if chunk is invalid
if (
not any([morph.pos == "名詞" for morph in chunk.morphs])
or int(chunk.dst) == -1
):
continue
# Get path
path = [chunk.get_surface()]
dst = int(chunk.dst)
while dst != -1:
path.append(chunks[dst].get_surface())
dst = int(chunks[dst].dst)
paths.append(path)
return paths
def write_to_file(sents: List[dict], path: str) -> None:
"""Write to file.
Args:
sents ([type]):
e.g. [[['吾輩は', '猫である']],
[['名前は', '無い']],
[['どこで', '生れたか', 'つかぬ'], ['見当が', 'つかぬ']]]
"""
# convert_frame_to_text
lines = []
for sent in sents:
for chunk in sent:
lines.append(" -> ".join(chunk))
# write_to_file
with open(path, "w") as f:
for line in lines:
f.write(f"{line}\n")
fpath = "neko.txt.cabocha"
sentences = read_file(fpath)
sentences = [convert_sent_to_chunks(sent) for sent in sentences] # ans41
# ans48
pattern_sents = [get_path(sent) for sent in sentences]
pattern_sents = list(filter(lambda x: len(x) != 0, pattern_sents))
write_to_file(pattern_sents, "noun_paths.txt")
# 吾輩は -> 猫である
# 名前は -> 無い
# どこで -> 生れたか -> つかぬ
# 見当が -> つかぬ
# 何でも -> 薄暗い -> 所で -> 泣いて -> 記憶している
More than 3 years have passed since last update.
Register as a new user and use Qiita more conveniently
- You get articles that match your needs
- You can efficiently read back useful information
- You can use dark theme