0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

TensorFlowで input:100, output:100のネットワークでの学習を検討 v0.5 > バックアップ機能 / 100パターンの出力

Last updated at Posted at 2017-02-05
動作環境
GeForce GTX 1070 (8GB)
ASRock Z170M Pro4S [Intel Z170chipset]
Ubuntu 14.04 LTS desktop amd64
TensorFlow v0.11
cuDNN v5.1 for Linux
CUDA v8.0
Python 2.7.6
IPython 5.1.0 -- An enhanced Interactive Python.
gcc (Ubuntu 4.8.4-2ubuntu1~14.04.3) 4.8.4

v0.1 http://qiita.com/7of9/items/8b43357bcaea1f1bce4b

TensorFlowを使って、input:100, output:100程度のネットワークの学習をしようかと検討中。

v0.5

実装内容

  • v0.5
    • csvファイルを上書きしてしまう前に、bakファイルを作るようにした
      • 誤操作の防止
    • 5パターンだけ表示して、100パターンファイル出力
    • PEP8 coding ruleに準拠

code

Jupyterコード

in100_out100.ipynb
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import os

'''
v0.5 Feb. 06, 2017
  - add [FILENAME_*_CSV],[FILENAME_*_BAK]
  - output to csv with append mode
v0.4 Jan. 21, 2017
  - set size of figures
v0.3 Jan. 21, 2017
  - show 2 images in one figure
v0.2 Jan. 14, 2017
  - calcOutput() return in numpy.array
  - add saveToCsvFile()
v0.1 Jan. 14, 2017
  - add calcOutput()
  - add showIn2D()
  - show 1d in 2d format
'''

'''
codingrule:PEP8
'''

XDIM = 10
YDIM = 10
INDIM = XDIM * YDIM

FILENAME_IN_CSV = 'test_in.csv'
FILENAME_OUT_CSV = 'test_out.csv'
FILENAME_IN_BAK = 'test_in.bak'
FILENAME_OUT_BAK = 'test_out.bak'


def saveToCsvFile(data_1d, filename):
    wrk_1d = data_1d.reshape(1, INDIM)
    # np.savetxt(filename, wrk_1d, delimiter=',')
    with open(filename, 'a') as fd:
        np.savetxt(fd, wrk_1d)


def calcOutput(in_1d):
    len_1d = XDIM * YDIM
    out_1d = [0.0] * len_1d
    for idx in range(0, in_1d.size):
        out_1d[idx] = in_1d[len_1d - idx - 1]
    return np.array(out_1d)


def showIn2D(data_1d):
    # print(data_1d)
    data_2d = np.reshape(data_1d, (XDIM, YDIM))
    plt.imshow(data_2d, extent=(0, XDIM, 0, YDIM), cmap=cm.gist_rainbow)
    plt.show()


def showIn2D_2image_subplot_each(data1_1d, data2_1d):
    data1_2d = np.reshape(data1_1d, (XDIM, YDIM))
    data2_2d = np.reshape(data2_1d, (XDIM, YDIM))
    fig1 = plt.figure(1)
    fig1.set_size_inches(3.14, 3.14)
    plt.subplot(121)
    plt.title('input node')
    plt.imshow(data1_2d, extent=(0, XDIM, 0, YDIM), cmap=cm.gist_rainbow)
    plt.subplot(122)
    plt.title('output node')
    plt.imshow(data2_2d, extent=(0, XDIM, 0, YDIM), cmap=cm.gist_rainbow)
    plt.show()


def showIn2D_2image_subplot_first(data1_1d, data2_1d):
    data1_2d = np.reshape(data1_1d, (XDIM, YDIM))
    data2_2d = np.reshape(data2_1d, (XDIM, YDIM))
    fig, (axL, axR) = plt.subplots(ncols=2, figsize=(10, 4))
    axL.imshow(data1_2d, extent=(0, XDIM, 0, YDIM), cmap=cm.gist_rainbow)
    axL.grid(True)
    axR.imshow(data2_2d, extent=(0, XDIM, 0, YDIM), cmap=cm.gist_rainbow)
    axR.grid(True)
    fig.show()


if __name__ == '__main__':
    # backup the original csv files
    if os.path.exists(FILENAME_IN_CSV):
        os.rename(FILENAME_IN_CSV, FILENAME_IN_BAK)
    if os.path.exists(FILENAME_OUT_CSV):
        os.rename(FILENAME_OUT_CSV, FILENAME_OUT_BAK)

    # append csv
    NUM_FILEOUT = 100
    NUM_DISPLAY = 5
    for loop in range(NUM_FILEOUT):
        in_1d = np.random.rand(INDIM)
        out_1d = calcOutput(in_1d)
        saveToCsvFile(in_1d, FILENAME_IN_CSV)
        saveToCsvFile(out_1d, FILENAME_OUT_CSV)
        if loop < NUM_DISPLAY:
            showIn2D_2image_subplot_each(in_1d, out_1d)
            showIn2D_2image_subplot_first(in_1d, out_1d)

結果

input nodeの内容を180度回転したoutput nodeを出力。ノード数を変更していき、ノード数増大時のDeep Learning学習のコツをつかむ (to get the hang of it)。
5つだけ画像表示。
test_in.csvとtest_out.csvが生成される。
(バックアップファイル test_in.bakとtest_out.bak)

qiita.png

0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?