0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

SIRIS | Geometry > Gaussian random sphere (@ SIRIS) > Output > ,and which points should be connected to form the trinangulation

Last updated at Posted at 2018-04-27

関連

頂点のx,y,z座標 + triangulation情報

SIRISに含まれるGaussian random sphere。
光散乱数値シミュレーションADDAで使うためには

  • 頂点のx,y,z座標 + triangulation情報

の下記への変換が必要。

  • dipoleでvolumeをfillした情報

Output

@ G-sphere/RAEDME
2.2 Output

(下記、太字は強調のため)

The matlabx.out, matlaby.out, and matlabz.out files consists of x, y, and z coordinates, respectively, of the grid points at the particle surface. The files vtk.out and idl.out contain information on the number of points and number of triangles describing the shape, coordinates (x,y,z) of the points that define the triangles, and which points should be connected to form the triangles.

整理すると

  • matlabx.out, matlaby.out, matlabz.out: 頂点のx,y,z座標
  • vtk.out and idl.out: triangulation情報を含む

vtk.out

vtk.ouy
# vtk DataFile Version 2.0
gsphere output            
ASCII                     
DATASET POLYDATA          
POINTS     578  float
   0.0000000000000000        0.0000000000000000        1.6484627588210747     
  0.22025970645867510        0.0000000000000000        1.6730385712011135     
   1.2375466764379659E-017  0.20210670983659845        1.5351528724506893     
 -0.19117217165911085        2.3411838810837846E-017   1.4520968091182878     
  -3.9762646348017165E-017 -0.21645776494197605        1.6441599582893061     
...
...
...
POLYGONS    1152   4608
           3           0           1           2
           3           0           2           3
           3           0           3           4
           3           0           4           1
           3           1           5           6
...
...

POLYGONSにtriangulation情報が含まれているのだろう。

POLYGONSの1152の方は1152個のtrianglesがあることを意味する。
4608の方は未消化。

vtk.outにはPOINTS 578 floatのように頂点情報も含まれるため、matlabx.outを読む必要はなくなる。

0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?