0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

Geometry > Link > Gaussian random sphere > 手法とコードへのリンク

Last updated at Posted at 2018-04-13

Gaussian Random Sphereという球形状に凹凸を加える手法とコードへのリンク。

SIRIS

Fortranコード。
SIRISのパッケージ内にG-sphere/がある。

  • 環境
    • スクリプトがtcshのShebangになっている
    • 実行内容を見るとbash Shebangに変更して、nice +2を取ることで実行可能
    • g77は適宜f77に変更

How can I coded Gaussian random sphere model in Matlab?

Hilam AlquranによるPDFにてequationが紹介されている。

Examples of Gaussian random spheres

論文のFig. 1.に形状例がある。
https://www.researchgate.net/figure/Examples-of-Gaussian-random-spheres-with-fixed-r-0-175-m-a-c-Gaussian-spheres_fig1_3409990

Light scattering by atmospheric mineral dust particles

論文のFig 9.に形状例がある。
論文はfull-text PDFが取得可能。

下記の形状も扱っている。

  • random blocks
  • deformed spheroids
  • deformed aggregates
  • concave fractal polyhedra
  • spatial Poisson-Voronoi tessellation
  • agglomerated debris particles
  • irregular flakes
  • irregular rhombohedra
  • inhomogeneous stereogrammetric sphaes

(Note: 下記の太字は強調のため)

Homogeneous, isotoropic models
...
, but one notable exception is the Gaussian random sphere (GRS) geometry by [106], which is a stocastic geometry based on deforming a sphere by a series expansion of spherical harmonics in a statistically controlled way. The statistical shape is defined by the covariance function of radius or logradius, from which individual particles are obtained by randomizing the weights of the spherical harmonics expansion, following the statistics set by the covariance function.

...

`106. K. Muinonen, T. Nousiainen, P. Fast, K. Lumme, J.I. Pletoneimi (1996). Light scattering by Gaussian random particles: Ray optics approximation. J. Quant. Spectorsc. Radiat. Transfer, 55, 577-601. [link]

how to generate new points as offset with gaussian distribution for some points in spherical coordinates in python

下記はGaussian distributionを使用しているが、形状生成の点ではGaussian random sphereとは異なるかもしれない(未確認)。

Qiita link

0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?