Help us understand the problem. What is going on with this article?

Matplotlib > view_init(elev=None, azim=None)のデフォルト値 > elev = 30, azim = -60

More than 1 year has passed since last update.
動作環境
GeForce GTX 1070 (8GB)
ASRock Z170M Pro4S [Intel Z170chipset]
Ubuntu 16.04 LTS desktop amd64
TensorFlow v1.2.1
cuDNN v5.1 for Linux
CUDA v8.0
Python 3.5.2
IPython 6.0.0 -- An enhanced Interactive Python.
gcc (Ubuntu 5.4.0-6ubuntu1~16.04.4) 5.4.0 20160609
GNU bash, version 4.3.48(1)-release (x86_64-pc-linux-gnu)

https://matplotlib.org/mpl_toolkits/mplot3d/api.html
に掲載されているViewを変更するAPI

view_init(elev=None, azim=None)

デフォルト値が書いていないような気がする。

以下で見つけた。
https://github.com/matplotlib/matplotlib/blob/master/lib/mpl_toolkits/mplot3d/axes3d.py

      ================   =========================================
      Keyword            Description
      ================   =========================================
      *azim*             Azimuthal viewing angle (default -60)
      *elev*             Elevation viewing angle (default 30)
      *zscale*           [%(scale)s]
      *sharez*           Other axes to share z-limits with
      *proj_type*        'persp' or 'ortho' (default 'persp')
      ================   =========================================

こういうのはバージョンが上がると変更されるのだろうか。

7of9
セブンオブナインです。Unimatrix 01の第三付属物 9の7という識別番号です。Star trek Voyagerの好きなキャラクターです。まとめ記事は後日タイトルから内容がわからなくなるため、title検索で見つかるよう個々の記事にしてます。いわゆるBorg集合体の有名なセリフから「お前たち(の知識)を吸収する。抵抗は無意味だ」。Thanks in advance.
Why not register and get more from Qiita?
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away
Comments
No comments
Sign up for free and join this conversation.
If you already have a Qiita account
Why do not you register as a user and use Qiita more conveniently?
You need to log in to use this function. Qiita can be used more conveniently after logging in.
You seem to be reading articles frequently this month. Qiita can be used more conveniently after logging in.
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away
ユーザーは見つかりませんでした