0
0

モノイダルプロ函手のDay畳み込み

Posted at

モノイダル圏

モノイダル圏$\mathscr{M}$とはモノイダル函手$\oplus:\mathscr{M}\times\mathscr{M}\rightarrow\mathscr{M}$が定まった圏で,次を満たすものを言う.

  • 単位対象$I\in\mathscr{M}$の存在.
    対象$I\in\mathscr{M}$が存在して任意の対象$M\in\mathscr{M}$に対して.
    \begin{align}
    \rho_M&:M\otimes I \simeq M\\
    \lambda_M&:I\otimes M \simeq M
    \end{align}
    
    となる同型$\rho_M,\lambda_M$が存在する.
  • 任意の対象$A,B,C\in\mathscr{M}$に対して,
    \alpha_{A,B,C}:(A\otimes B)\otimes C\simeq A\otimes(B\otimes C)
    
    となる同型が存在する.
    また互角恒等式と三角恒等式を満たす.
\begin{alignat}{5}
((A\otimes B)\otimes C)\otimes D&\stackrel{\alpha_{A,B,C}\otimes id_D}{\to}&(A\otimes (B\otimes C))\otimes D&\stackrel{\alpha_{A,B\otimes C,D}}{\to}&A\otimes((B\otimes C)\otimes D)\\
\downarrow \alpha_{A\otimes B,C,D}&&&&\downarrow id_A\otimes\alpha_{B,C,D}\\
(A\otimes B)\otimes (C\otimes D)&&\stackrel{\alpha_{A,B,C\otimes D}}{\longrightarrow}&& A\otimes(B\otimes(C\otimes D))
\end{alignat}
\begin{alignat}{3}
(A\otimes I)\otimes B&\stackrel{\alpha_{A,I,B}}{\to}&A\otimes (I\otimes B)\\
\rho_A\otimes id_B\downarrow& &\downarrow id_A\otimes\lambda_B\\
&A\otimes B&
\end{alignat}

モノイダル圏上の函手をモノイダル函手やモノイダルプロ函手と呼ぶ.

Day畳み込み

モノイダルプロ函手間の新しい演算としてDay畳み込みを定義する.
Day畳み込みとは人名'Brian Day'から取ってDay Convolutionと命名されている.
モノイダル圏$\mathscr{E}$上のモノイダル函手$F,G:\mathscr{E}\to\mathbb{Set}$に対してDay畳み込み$(F\star G)_{\mathscr{E}}$は次のように定義される.

(F\star G)_\mathscr{E}:=\overline{\bigoplus_{x,y\in\mathscr{E}}}F_{(x)}G_{(y)}\Delta^{(x\otimes y)}_{\mathscr{E}}

また,モノイダル圏$\mathscr{C},\mathscr{D}$上のモノイダルプロ函手$P,Q:\mathscr{C}^\mathbb{op}\times\mathscr{D}\to\mathbb{Set}$に対してDay畳み込み$(F\star G)_\mathscr{D}^\mathscr{C}$は次のように定義される.

(F\star G)_\mathscr{D}^\mathscr{C}:=\overline{\bigoplus_{\substack{A,C\in\mathscr{C}\\B,D\in\mathscr{D}}}}P^{(A)}_{(B)}Q^{(C)}_{(D)}\Delta_{(A\otimes C)}^{\mathscr{C}}\Delta^{(B\otimes D)}_{\mathscr{D}}

Day畳み込みの単位元

プロ函手のDay畳み込みは単位元$J_\mathscr{D}^\mathscr{C}$を持つ.

J_\mathscr{D}^\mathscr{C}:=\Delta_{(I)}^\mathscr{C}\Delta_\mathscr{D}^{(I)}

左単位律を示す.

\begin{align}
(J\star Q)_\mathscr{D}^\mathscr{C}&=\overline{\bigoplus_{\substack{A,C\in\mathscr{C}\\B,D\in\mathscr{D}}}}J^{(A)}_{(B)}Q^{(C)}_{(D)}\Delta_{(A\otimes C)}^{\mathscr{C}}\Delta^{(B\otimes D)}_{\mathscr{D}}\\
&=\overline{\bigoplus_{\substack{A,C\in\mathscr{C}\\B,D\in\mathscr{D}}}}\Delta_{(I)}^{(A)}\Delta_{(B)}^{(I)}Q^{(C)}_{(D)}\Delta_{(A\otimes C)}^{\mathscr{C}}\Delta^{(B\otimes D)}_{\mathscr{D}}
\end{align}

ここで,$\Delta$の単位律を用いる.

\begin{align}
&=\overline{\bigoplus_{\substack{C\in\mathscr{C}\\D\in\mathscr{D}}}}Q^{(C)}_{(D)}\Delta_{(I\otimes C)}^{\mathscr{C}}\Delta^{(I\otimes D)}_{\mathscr{D}}\\
&\simeq\overline{\bigoplus_{\substack{C\in\mathscr{C}\\D\in\mathscr{D}}}}Q^{(C)}_{(D)}\Delta_{(C)}^{\mathscr{C}}\Delta^{(D)}_{\mathscr{D}}\\
&=Q^{\mathscr{C}}_{\mathscr{D}}
\end{align}

右単位律は省略する.

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0