0
0

Day畳み込みの結合律

Last updated at Posted at 2024-05-30

結合律

前回定義したDay畳み込みには単位元が存在した.
今回はDay畳み込みには結合法則が成り立つことを確認する.
圏$\mathscr{C,D}$をモノイダル圏とし,$F_\mathscr{D}^\mathscr{C},G_\mathscr{D}^\mathscr{C},H_\mathscr{D}^\mathscr{C}$をモノイダルプロ函手とする.

\begin{align}
(F\star(G\star H))_\mathscr{D}^\mathscr{C} &= \overline{\bigoplus_{\substack{A,C\in\mathscr{C}\\B,D\in\mathscr{D}}}}F^{(A)}_{(B)}(G\star H)^{(C)}_{(D)}\Delta_{(A\otimes C)}^{\mathscr{C}}\Delta^{(B\otimes D)}_{\mathscr{D}}\\
&= \overline{\bigoplus_{\substack{A,C\in\mathscr{C}\\B,D\in\mathscr{D}}}}F^{(A)}_{(B)}\left(\overline{\bigoplus_{\substack{W,Y\in\mathscr{C}\\X,Z\in\mathscr{D}}}}G^{(W)}_{(X)}H^{(Y)}_{(Z)}\Delta_{(W\otimes Y)}^{(C)}\Delta^{(X\otimes Z)}_{(D)}\right)\Delta_{(A\otimes C)}^{\mathscr{C}}\Delta^{(B\otimes D)}_{\mathscr{D}}
\end{align}

積とコエンドは交換するので,

\begin{align}
&= \overline{\bigoplus_{\substack{A,C,W,Y\in\mathscr{C}\\B,D,X,Z\in\mathscr{D}}}}F^{(A)}_{(B)}G^{(W)}_{(X)}H^{(Y)}_{(Z)}\Delta_{(W\otimes Y)}^{(C)}\Delta^{(X\otimes Z)}_{(D)}\Delta_{(A\otimes C)}^{\mathscr{C}}\Delta^{(B\otimes D)}_{\mathscr{D}}\\
&= \overline{\bigoplus_{\substack{A,W,Y\in\mathscr{C}\\B,X,Z\in\mathscr{D}}}}F^{(A)}_{(B)}G^{(W)}_{(X)}H^{(Y)}_{(Z)}\Delta_{(A\otimes(W\otimes Y))}^{\mathscr{C}}\Delta^{(B\otimes(X\otimes Z))}_{\mathscr{D}}\\
&\simeq \overline{\bigoplus_{\substack{A,W,Y\in\mathscr{C}\\B,X,Z\in\mathscr{D}}}}F^{(A)}_{(B)}G^{(W)}_{(X)}H^{(Y)}_{(Z)}\Delta_{((A\otimes W)\otimes Y)}^{\mathscr{C}}\Delta^{((B\otimes X)\otimes Z)}_{\mathscr{D}}\\
&= \overline{\bigoplus_{\substack{A,C,W,Y\in\mathscr{C}\\B,D,X,Z\in\mathscr{D}}}}F^{(A)}_{(B)}G^{(W)}_{(X)}H^{(Y)}_{(Z)}\Delta_{(A\otimes W)}^{(C)}\Delta_{(D)}^{(B\otimes X)}\Delta_{(C\otimes Y)}^{\mathscr{C}}\Delta^{(D\otimes Z)}_{\mathscr{D}}\\
&= \overline{\bigoplus_{\substack{C,Y\in\mathscr{C}\\D,Z\in\mathscr{D}}}}\left(\overline{\bigoplus_{\substack{A,W\in\mathscr{C}\\B,X\in\mathscr{D}}}}F^{(A)}_{(B)}G^{(W)}_{(X)}\Delta_{(A\otimes W)}^{(C)}\Delta_{(D)}^{(B\otimes X)}\right)H^{(Y)}_{(Z)}\Delta_{(C\otimes Y)}^{\mathscr{C}}\Delta^{(D\otimes Z)}_{\mathscr{D}}\\
&= \overline{\bigoplus_{\substack{C,Y\in\mathscr{C}\\D,Z\in\mathscr{D}}}}(F\star G)_{(D)}^{(C)}H^{(Y)}_{(Z)}\Delta_{(C\otimes Y)}^{\mathscr{C}}\Delta^{(D\otimes Z)}_{\mathscr{D}}\\
&=((F\star G)\star H)_\mathscr{D}^\mathscr{C}
\end{align}

モノイダルプロ函手の圏

モノイダル圏$\mathscr{C,D}$に対してモノイダルプロ函手の圏$\mathbb{Prof}(\mathscr{C,D})$を考えることができる.
$\mathbb{Prof}(\mathscr{C,D})$は対象をプロ函手$\mathscr{C\times D}\to\mathbb{Set}$射をその間の自然変換で定めたものである.
このモノイダルプロ函手の圏は$(\mathbb{Prof}(\mathscr{C,D}),\star,J)$の三つ組みでモノイダル圏となる.

$J$の定義は前回を参照すること.

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0