Help us understand the problem. What is going on with this article?

OpenCVの物体検出の訓練データを作るためのツール

OpenCVで物体検出を自作するためには、訓練データとして大量の画像を切り出す必要があります。
そこで二つのツールを作成しました。

screenshot.png

簡易的なGUIで画像の切り出しを行い、opencv_createsamples.exeにわたすファイルを生成します。
コードは下に載せました。
突貫工事で作ったので、バグが多々あるかもしれません。

使用方法

準備

以下のようなディレクトリ構成にします。

適当なディレクトリ/
  ├── images/
  |      ├── 画像ファイル1.png
  |      ├── 画像ファイル2.jpg
  |      |     ︙
  |      └── 画像ファイルn.bmp
  ├── clipper.py
  ├── make_negative.py
  ├── opencv_createsamples.exe
  ├── opencv_traincascade.exe
  └── (OpenCVのDLL類)

画像切り出し支援ツールの使用方法

  • 左クリックのドラッグで、検出したい物体の範囲を選択
  • 右クリックで、最後に選択した範囲の削除
  • マウルホイールで画像の切り替え
  • ESCキーか「Q」キーで終了

終了するとopencv_createsamples.exeに入力できるファイルpos.datが生成されます。
途中経過はファイルに保存されるので、終了しても作業を再開できます。

負例自動作成ツールの使用方法

画像切り出し支援ツールを使ってから、make_negative.pyを実行するだけです。
そうすると、ディレクトリnegativesに負例画像が生成され、bg.datに負例のリストが生成されます。

opencv_createsamples.exeの使用方法

とりあえず、下のコマンドを実行すれば大丈夫です。

opencv_createsamples.exe -info pos.dat -vec pos.vec

opencv_traincascade.exeの使用方法

opencv_traincascade.exe -data 出力ディレクトリ -vec pos.vec -bg bg.dat

コード

画像切り出し支援ツール

clipper.py
import cv2
import glob
import lzma
import os
import pickle


file_dir = './images'
state_file = './data'
output_file = './pos.dat'
display_size = 768
window_name = 'image_clip'

state = {}

mouse_position = [0, 0]
mouse_wheel    = 0
crop_origin    = None
crop_end       = None
selecting      = False
remove         = False

def load_state():
    global state

    if os.path.exists(state_file):
        with lzma.open(state_file, 'rb') as f:
            state = pickle.load(f)

def save_state():
    with lzma.open(state_file, 'wb') as f:
        pickle.dump(state, f)

def output():
    with open(output_file, 'w') as f:
        for file_name, rects in state.items():
            if len(rects) == 0:
                continue
            values  = [os.path.abspath(file_name), str(len(rects))]
            values += sum([[str(int(r)) for r in rect] for rect in rects], [])
            f.write(' '.join(values) + '\n')

def mouse_callback(event, x, y, flags, param):
    global mouse_position
    global mouse_wheel
    global crop_origin
    global selecting
    global crop_end
    global remove

    mouse_position = (x, y)

    if event == cv2.EVENT_LBUTTONDOWN:
        crop_origin = mouse_position
        selecting = True
    if event == cv2.EVENT_LBUTTONUP:
        crop_end = mouse_position
        selecting = False
    if event == cv2.EVENT_RBUTTONDOWN:
        remove = True
    if event == cv2.EVENT_MOUSEWHEEL:
        mouse_wheel = flags


def main():
    global state
    global mouse_wheel
    global crop_origin
    global crop_end
    global remove

    os.makedirs(file_dir, exist_ok=True)
    image_files = glob.glob(os.path.join(file_dir, '*'))

    if len(image_files) == 0:
        print('imagesに画像を入れてください')
        exit()

    load_state()

    cv2.namedWindow(window_name, cv2.WINDOW_AUTOSIZE)
    cv2.setMouseCallback(window_name, mouse_callback)

    image_counter = 0
    for i in range(len(image_files)):
        image_counter = i
        if image_files[image_counter] not in state.keys():
            break

    while True:
        if image_counter < 0:
            image_counter = image_counter + len(image_files)
        if image_counter >= len(image_files):
            image_counter = image_counter - len(image_files)

        save_state()

        image_file = image_files[image_counter]
        image = cv2.imread(image_file)
        scale = display_size / max(image.shape[0], image.shape[1])

        resized_image = cv2.resize(image, 
                                   dsize=None,
                                   fx=scale,
                                   fy=scale,
                                   interpolation=cv2.INTER_AREA)

        if image_file not in state:
            state[image_file] = []

        while True:
            display_image = resized_image.copy()

            for rect in state[image_file]:
                left_top = (int(rect[0] * scale), int(rect[1] * scale))
                right_bottom = (int((rect[0] + rect[2]) * scale), int((rect[1] + rect[3]) * scale))
                display_image = cv2.rectangle(display_image,
                                              left_top,
                                              right_bottom,
                                              (0, 0, 255),
                                              2)

            display_image = cv2.line(display_image,
                                     (mouse_position[0], 0),
                                     (mouse_position[0], display_image.shape[0]),
                                     (255, 0, 0),
                                     2)

            display_image = cv2.line(display_image,
                                     (0, mouse_position[1]),
                                     (display_image.shape[1], mouse_position[1]),
                                     (255, 0, 0),
                                     2)

            if selecting:
                display_image = cv2.rectangle(display_image,
                                              crop_origin,
                                              mouse_position,
                                              (0, 128, 255),
                                              2)

            cv2.imshow(window_name, display_image)

            key = cv2.waitKey(10) & 0xFF

            if crop_origin is not None and crop_end is not None:
                rect_x = min(mouse_position[0], crop_origin[0])
                rect_w = max(mouse_position[0], crop_origin[0]) - rect_x
                rect_y = min(mouse_position[1], crop_origin[1])
                rect_h = max(mouse_position[1], crop_origin[1]) - rect_y
                new_rect = [rect_x / scale, rect_y / scale, rect_w / scale, rect_h / scale]
                state[image_file].append(new_rect)

                crop_origin = None
                crop_end = None

            if remove:
                if len(state[image_file]) > 0:
                    state[image_file].pop(-1)
                remove = False

            if mouse_wheel != 0:
                image_counter += 1 if mouse_wheel > 0 else -1
                mouse_wheel = 0
                break

            if key == ord('q') or key == 27:
                return


if __name__ == '__main__':
    main()
    cv2.destroyAllWindows()
    save_state()
    output()

負例自動作成ツール

make_negative.py
import cv2
import glob
import lzma
import os
import pickle
import random


file_dir = './images'
output_dir = './negatives/'
output_list_file = './bg.dat'
state_file = './data'

def sample_start_point(width, height, positive_rects):
    for i in range(100):
        start_point = [random.randrange(width), random.randrange(height)]

        for rect in positive_rects:
            rect_left   = rect[0]
            rect_right  = rect[0] + rect[2]
            rect_top    = rect[1]
            rect_bottom = rect[1] + rect[3]

            if ((rect_left <= start_point[0] and rect_right  >= start_point[0]) and
                (rect_top  <= start_point[1] and rect_bottom >= start_point[1])):
                break
        else:
            return start_point

    return None

if __name__ == '__main__':
    if not os.path.exists(state_file):
        exit()

    with lzma.open(state_file, 'rb') as f:
        state = pickle.load(f)

    image_counter = 0

    for file_name, positive_rects in state.items():
        if len(positive_rects) == 0:
            continue

        image = cv2.imread(file_name)
        width = image.shape[1]
        height = image.shape[0]

        negative_rects = []

        for i in range(1000):
            start_point = sample_start_point(width, height, positive_rects)
            if start_point is None:
                continue

            negative_rect = [start_point[0], start_point[1], start_point[0], start_point[1]]

            min_x = 0
            max_x = width
            min_y = 0
            max_y = height

            directions = random.sample(['left', 'right', 'up', 'down'], 4)

            for direction in directions:
                for positive_rect in positive_rects:
                    positive_rect_left   = positive_rect[0]
                    positive_rect_right  = positive_rect[0] + positive_rect[2]
                    positive_rect_top    = positive_rect[1]
                    positive_rect_bottom = positive_rect[1] + positive_rect[3]

                    if not (negative_rect[1] > positive_rect_bottom or
                            negative_rect[3] < positive_rect_top):
                        if direction == 'left':
                            if negative_rect[0] > positive_rect_right:
                                min_x = max(min_x, positive_rect_right)
                        if direction == 'right':
                            if negative_rect[2] < positive_rect_left:
                                max_x = min(max_x, positive_rect_left)

                    if not (negative_rect[0] > positive_rect_right or
                            negative_rect[2] < positive_rect_left):
                        if direction == 'up':
                            if negative_rect[1] > positive_rect_bottom:
                                min_y = max(min_y, positive_rect_bottom)
                        if direction == 'down':
                            if negative_rect[3] < positive_rect_top:
                                max_y = min(max_y, positive_rect_top)

                if direction == 'left':
                    negative_rect[0] = min_x
                if direction == 'right':
                    negative_rect[2] = max_x
                if direction == 'up':
                    negative_rect[1] = min_y
                if direction == 'down':
                    negative_rect[3] = max_y

            if negative_rect[0] == negative_rect[2] or negative_rect[1] == negative_rect[3]:
                continue

            negative_rects.append(tuple([int(x) for x in negative_rect]))

        negative_rects = set(negative_rects)

        for negative_rect in negative_rects:
            trimed_image = image[negative_rect[1]:negative_rect[3], negative_rect[0]:negative_rect[2], :]
            os.makedirs(output_dir, exist_ok=True)

            extention = os.path.splitext(file_name)[1]
            output_file_path = os.path.join(output_dir, '{}{}'.format(image_counter, extention))
            cv2.imwrite(output_file_path, trimed_image)
            image_counter += 1

    image_files = glob.glob(os.path.join(output_dir, '*'))
    with open(output_list_file, 'w') as f:
        for image_file in image_files:
            f.write('{}\n'.format(os.path.abspath(image_file)))
0sb1
Why not register and get more from Qiita?
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away