Help us understand the problem. What is going on with this article?

# てすと

More than 1 year has passed since last update.
```"""
Created on Mon Nov 26 23:40:35 2018

@author: jin
"""

import numpy as np
import tensorflow as tf
import tensorflow.contrib.slim as slim
import tensorflow.contrib.learn as learn
import copy
from tensorflow.contrib.learn.python.learn.metric_spec import MetricSpec

x = tf.placeholder(tf.float32, shape=[None, 784])
y = tf.placeholder(tf.float32, shape=[None, 10])

def cnn_model(x,y):
x = tf.reshape(x,[-1, 28, 28, 1])
y = slim.one_hot_encoding(y, 10)

with slim.arg_scope(
[slim.conv2d],
#活性化関数
activation_fn=tf.nn.relu,
#重み
weights_initializer=tf.truncated_normal_initializer(stddev=0.1),
#バイアス
biases_initializer=tf.constant_initializer(0.1)
):
#畳み込み層1
c1 = slim.conv2d(x, 32, [5,5])
#プーリング層1
p1 = slim.max_pool2d(c1, [2,2])
#畳み込み層2
c2 = slim.conv2d(p1, 64, [5,5])
#プーリング層2
p2 = slim.max_pool2d(c2, [2,2])
#全結合層
p2_flat = slim.flatten(p2)
fc1 = slim.fully_connected(p2_flat, 1024)
#dropout
#prob = tf.placeholder(tf.float32)
#dropout = slim.dropout(fc1, prob)
#読み出し層
fc2 = slim.fully_connected(fc1, 10, activation_fn=None)

prob = slim.softmax(fc2)

cross_entropy = slim.losses.softmax_cross_entropy(prob, y)

return prob,cross_entropy,train_step

mnist_o = np.genfromtxt(r'C:\Users\jin\Desktop\digits.csv', delimiter=",")
#1列目を消去
mnist = np.delete(mnist_o,[0],0)
#ラベル列の分離
mnist_label,mnist_data = np.hsplit(mnist,[1])
#学習行とテスト行のsplit
x_train, x_test = np.vsplit(mnist_data,[8000])
y_train, y_test = np.vsplit(mnist_label,[8000])

tf.logging.set_verbosity(tf.logging.INFO)
validation_metrics = {
"accuracy" : MetricSpec(
metric_fn=tf.contrib.metrics.streaming_accuracy,
prediction_key="class")
}
validation_monitor = learn.monitors.ValidationMonitor(
x_test,
y_test,
metrics=validation_metrics,
every_n_steps=100)

classifier = learn.Estimator(model_fn=cnn_model, model_dir='/tmp/cnn_log',
config=learn.RunConfig(save_checkpoints_secs=10))
classifier.fit(x=x_train, y=y_train, steps=3200, batch_size=64,
monitors=[validation_monitor])
```
Why do not you register as a user and use Qiita more conveniently?
1. We will deliver articles that match you
By following users and tags, you can catch up information on technical fields that you are interested in as a whole
2. you can read useful information later efficiently
By "stocking" the articles you like, you can search right away