4
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

座標上の四角形の中に、点が入っているかを調べたい

Last updated at Posted at 2018-05-22

はじめに

点(a,b,c,d)をもつ四角形の中に点eが入っているか、を出すためにベクトルの外積を使用します。
numpyって本当に便利ですね。

考え方

  1. まず、原点から点(a,b,e)へのベクトルA,B,Eを作成。
  2. 点aからbへのベクトルAB、点aからeへのベクトルAEを計算。
  3. ベクトルAB、ベクトルAEの外積を計算
  4. b->c,c->d,d->aに対しても2,3を実施する。
  5. a->b, b->c, c->d, d->a のすべてで外積がマイナスであれば、
    点は確変の左側にあるといえる
    ->四角形の中にある

image.png

実装

以下が実装。

rect_inside.py

def in_rect(rect,target):
    a = (rect[0][0], rect[0][1])
    b = (rect[1][0], rect[1][1])
    c = (rect[2][0], rect[2][1])
    d = (rect[3][0], rect[3][1])
    e = (target[0], target[1])

    # 原点から点へのベクトルを求める
    vector_a = numpy.array(a)
    vector_b = numpy.array(b)
    vector_c = numpy.array(c)
    vector_d = numpy.array(d)
    vector_e = numpy.array(e)

    # 点から点へのベクトルを求める
    vector_ab = vector_b - vector_a
    vector_ae = vector_e - vector_a
    vector_bc = vector_c - vector_b
    vector_be = vector_e - vector_b
    vector_cd = vector_d - vector_c
    vector_ce = vector_e - vector_c
    vector_da = vector_a - vector_d
    vector_de = vector_e - vector_d

    # 外積を求める
    vector_cross_ab_ae = numpy.cross(vector_ab, vector_ae)
    vector_cross_bc_be = numpy.cross(vector_bc, vector_be)
    vector_cross_cd_ce = numpy.cross(vector_cd, vector_ce)
    vector_cross_da_de = numpy.cross(vector_da, vector_de)

    return vector_cross_ab_ae < 0 and vector_cross_bc_be < 0 and vector_cross_cd_ce < 0 and vector_cross_da_de < 0

if __name__ == '__main__':
    rect = [[48, 43],[45, 42],[43, 38],[45, 39]]
    print(in_rect(rect, [44,45]))
    # -> False
    print(in_rect(rect, [46,41]))
    # -> True

参考

4
2
1

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
4
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?