0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

Pythonデータ分析~scikit-leran,matplotlib編~

Posted at

この記事は、慶應理工アドベントカレンダー2021の10日目の記事です。
https://t.co/NOQgu1ypYl

今回はデータ分析入門ということで、Pythonでのデータ分析に欠かせないライブラリであるpandas、scikit-leran、matplotlibについて自分用の備忘録としてまとめてみたいと思います。

前回の記事(※)ではpandasについて紹介したので、今回の記事ではscikit-learnとmatplotlibについてまとめます。本記事はただのscikit-learnとmatplotlib公式リファレンスのまとめ記事になります。
(※https://qiita.com/yus04/items/bfa6ee9294c980f7bfe6)

#目次
0.scikit-learnのチートシート
1.sklearnのAPI一覧
2.クラスタリングのクラス一覧
3.クラスタリングのメソッド一覧
4.ニューラルネットワークのモデル一覧
5.SVM一覧
6.決定木一覧
7.matplotlibモジュール一覧
8.pyplotのメソッド一覧

##scikit-learnのチートシート
スクリーンショット 2021-12-10 10.29.23.png

##sklearnのAPI一覧

sklearn.base
sklearn.calibration
sklearn.cluster
sklearn.compose
sklearn.covariance
sklearn.cross_decomposition
sklearn.datasets
sklearn.decomposition
sklearn.discriminant_analysis
sklearn.dummy
sklearn.ensemble
sklearn.exceptions
sklearn.experimental
sklearn.feature_extraction
sklearn.feature_selection
sklearn.gaussian_process
sklearn.impute
sklearn.inspection
sklearn.isotonic
sklearn.kernel_approximation
sklearn.kernel_ridge
sklearn.linear_model
sklearn.manifold
sklearn.metrics
sklearn.mixture
sklearn.model_selection
sklearn.multiclass
sklearn.multioutput
sklearn.naive_bayes
sklearn.neighbors
sklearn.neural_network
sklearn.pipeline
sklearn.preprocessing
sklearn.random_projection
sklearn.semi_supervised
sklearn.svm
sklearn.tree:
sklearn.utils

##クラスタリングのクラス一覧

cluster.AffinityPropagation(*[, damping, …])
cluster.AgglomerativeClustering([…])
cluster.Birch(*[, threshold, …])
cluster.DBSCAN([eps, min_samples, metric, …])
cluster.FeatureAgglomeration([n_clusters, …])
cluster.KMeans([n_clusters, init, n_init, …])
cluster.MiniBatchKMeans([n_clusters, init, …])
cluster.MeanShift(*[, bandwidth, seeds, …])
cluster.OPTICS(*[, min_samples, max_eps, …])
cluster.SpectralClustering([n_clusters, …])
cluster.SpectralBiclustering([n_clusters, …])
cluster.SpectralCoclustering([n_clusters, …])

##クラスタリングのメソッド一覧

cluster.affinity_propagation(S, *[, …])
cluster.cluster_optics_dbscan(*, …)
cluster.cluster_optics_xi(*, reachability, …)
cluster.compute_optics_graph(X, *, …)
cluster.dbscan(X[, eps, min_samples, …])
cluster.estimate_bandwidth(X, *[, quantile, …])
cluster.k_means(X, n_clusters, *[, …])
cluster.kmeans_plusplus(X, n_clusters, *[, …])
cluster.mean_shift(X, *[, bandwidth, seeds, …])
cluster.spectral_clustering(affinity, *[, …])
cluster.ward_tree(X, *[, connectivity, …])

##ニューラルネットワークのモデル一覧

neural_network.BernoulliRBM([n_components, …])
neural_network.MLPClassifier([…])
neural_network.MLPRegressor([…])

##SVM一覧

svm.LinearSVC([penalty, loss, dual, tol, C, …])
svm.LinearSVR(*[, epsilon, tol, C, loss, …])
svm.NuSVC(*[, nu, kernel, degree, gamma, …])
svm.NuSVR(*[, nu, C, kernel, degree, gamma, …])
svm.OneClassSVM(*[, kernel, degree, gamma, …])
svm.SVC(*[, C, kernel, degree, gamma, …])
svm.SVR(*[, kernel, degree, gamma, coef0, …])
svm.l1_min_c(X, y, *[, loss, fit_intercept, …])

##決定木一覧

tree.DecisionTreeClassifier(*[, criterion, …])
tree.DecisionTreeRegressor(*[, criterion, …])
tree.ExtraTreeClassifier(*[, criterion, …])
tree.ExtraTreeRegressor(*[, criterion, …])
tree.export_graphviz(decision_tree[, …])
tree.export_text(decision_tree, *[, …])

##matplotlibモジュール一覧

matplotlib.afm
matplotlib.animation
matplotlib.artist
matplotlib.axes
matplotlib.axis
matplotlib.backend_bases
matplotlib.backend_managers
matplotlib.backend_tools
matplotlib.backends
matplotlib.bezier
matplotlib.blocking_input
matplotlib.category
matplotlib.cbook
matplotlib.cm
matplotlib.collections
matplotlib.colorbar
matplotlib.colors
matplotlib.container
matplotlib.contour
matplotlib.dates
matplotlib.docstring
matplotlib.dviread
matplotlib.figure
matplotlib.font_manager
matplotlib.fontconfig_pattern
matplotlib.gridspec
matplotlib.image
matplotlib.legend
matplotlib.legend_handler
matplotlib.lines
matplotlib.markers
matplotlib.mathtext
matplotlib.mlab
matplotlib.offsetbox
matplotlib.patches
matplotlib.path
matplotlib.patheffects
matplotlib.pyplot
matplotlib.projections
matplotlib.quiver
matplotlib.rcsetup
matplotlib.sankey
matplotlib.scale
matplotlib.sphinxext.mathmpl
matplotlib.sphinxext.plot_directive
matplotlib.spines
matplotlib.style
matplotlib.table
matplotlib.testing
matplotlib.text
matplotlib.texmanager
matplotlib.textpath
matplotlib.ticker
matplotlib.tight_bbox
matplotlib.tight_layout
matplotlib.transforms
matplotlib.tri
matplotlib.type1font
matplotlib.units
matplotlib.widgets
matplotlib._api
matplotlib._enums
mpl_toolkits.mplot3d
mpl_toolkits.axes_grid1
mpl_toolkits.axisartist
mpl_toolkits.axes_grid

##pyplotのメソッド一覧
一番よく使う、matplotlib.pyplotだけメソッド一覧を載せます。

acorr
angle_spectrum
annotate
arrow
autoscale
axes
axhline
axhspan
axis
axline
axvline
axvspan
bar
bar_label
barbs
barh
box
boxplot
broken_barh
cla
clabel
clf
clim
close
cohere
colorbar
contour
contourf
csd
delaxes
draw
draw_if_interactive
errorbar
eventplot
figimage
figlegend
fignum_exists
figtext
figure
fill
fill_between
fill_betweenx
findobj
gca
gcf
gci
get
get_figlabels
get_fignums
getp
grid
hexbin
hist
hist2d
hlines
imread
imsave
imshow
install_repl_displayhook
ioff
ion
isinteractive
legend
locator_params
loglog
magnitude_spectrum
margins
matshow
minorticks_off
minorticks_on
new_figure_manager
pause
pcolor
pcolormesh
phase_spectrum
pie
plot
plot_date
polar
psd
quiver
quiverkey
rc
rc_context
rcdefaults
rgrids
savefig
sca
scatter
sci
semilogx
semilogy
set_cmap
set_loglevel
setp
show
specgram
spy
stackplot
stairs
stem
step
streamplot
subplot
subplot2grid
subplot_mosaic
subplot_tool
subplots
subplots_adjust
suptitle
switch_backend
table
text
thetagrids
tick_params
ticklabel_format
tight_layout
title
tricontour
tricontourf
tripcolor
triplot
twinx
twiny
uninstall_repl_displayhook
violinplot
vlines
xcorr
xkcd
xlabel
xlim
xscale
xticks
ylabel
ylim
yscale
yticks

##参考文献
scikit-learn公式ドキュメント
https://scikit-learn.org/stable/modules/classes.html
matplotlib公式ドキュメント
https://matplotlib.org/stable/api/index.html

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?