0
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

行列・ベクトルの微分公式導出 vol.3

Last updated at Posted at 2021-07-26

残り2つではあるものの、ベクトルを行列で微分、行列を行列で微分は複雑すぎてよくわからないものが導出する。
なので導出はしない。
その代わり、引き続き、スカラーを行列で微分、に試みる。

traceを微分

$A$, $B$をサイズ$n$の正方行列とする。
$$\frac{\partial }{\partial A}tr(AB)= B^T$$

(証明1)$AB$の$i$行$i$列目の成分は、
$$x = a_{i1}b_{1i} + a_{i2}b_{2i} + \cdots +a_{in}b_{in}$$

$$\frac{\partial }{\partial a_{ij}} x = b_{ji}$$

だから、
$$\begin{pmatrix} b_{11} & b_{21} & \cdots & b_{n1}} \ b_{12} & b_{22} & \cdots & \vdots \ \vdots & \vdots & \ddots & \ b_{1n} & & \cdots & & b_{nn} \end{pmatrix} = B^T $$

証明2
行列のブロック化。
$$A= \begin{pmatrix} \boldsymbol a^1 \\ \boldsymbol a^2 \\ \boldsymbol a^3 \\ \vdots \\ \boldsymbol a^n \end{pmatrix}$$
$$B= \begin{pmatrix} \boldsymbol b_1 & \boldsymbol b_2 & \boldsymbol b_3 \cdots & \boldsymbol b_n \end{pmatrix}$$とする。(列成分を縦ベクトルとみなした。)

$$AB = \begin{pmatrix} \boldsymbol a^1 \\ \boldsymbol a^2 \\ \boldsymbol a^3 \\ \vdots \\ \boldsymbol a^n \end{pmatrix} \begin{pmatrix} \boldsymbol b_1 & \boldsymbol b_2 & \boldsymbol b_3 \cdots & \boldsymbol b_n \end{pmatrix}$$

$$\frac{\partial }{\partial A} trAB = \begin{pmatrix} \frac{\partial f}{\partial a_{11}} & \frac{\partial f}{\partial a_{12}} & \cdots & \frac{\partial f}{\partial a_{1n}}\\ \frac{\partial f}{\partial a_{21}} & \frac{\partial f}{\partial a_{22}} & \cdots & \vdots \\ \vdots & \vdots & \ddots & \\ \frac{\partial f}{\partial a_{n1}} & \cdots & & \frac{\partial f}{\partial a_{nn}}\end{pmatrix}tr \begin{pmatrix} \boldsymbol a^1 \\ \boldsymbol a^2 \\ \boldsymbol a^3 \\ \vdots \\ \boldsymbol a^n \end{pmatrix} \begin{pmatrix} \boldsymbol b_1 & \boldsymbol b_2 & \boldsymbol b_3 \cdots & \boldsymbol b_n \end{pmatrix}$$

$$\begin{pmatrix} \frac{\partial f}{\partial \boldsymbol a^1}^T \\ \frac{\partial f}{\partial\boldsymbol a^2}^T \\ \vdots \\ \end{pmatrix}\begin{pmatrix} \boldsymbol a^1\boldsymbol b_1 +\boldsymbol a^2\boldsymbol b_2 + \boldsymbol a^3\boldsymbol b_3 +\cdots + \boldsymbol a^n\boldsymbol b_n\end{pmatrix}$$

$$=\begin{pmatrix} {\boldsymbol b_1}^T \\ {\boldsymbol b_2}^T
\\ {\boldsymbol b_3}^T \\ \vdots \\ {\boldsymbol b_n}^T \end{pmatrix}= B^T$$

結局スカラー量を微分しているのだから、
$$\frac{\partial }{\partial A}tr(BA)= B^T$$

とりあえずこのシリーズはこれで終わりです。

(終)

0
2
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?