0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

density

Posted at
title.rb

import pandas as pd
import numpy as np

r_res = 0.01 # 距離方向の分解能(m)

# DataFrameの作成
df = pd.DataFrame(columns=['r', 'theta', 'phi'])

# r, theta, phiの値を生成するリスト内包表記
data = [{'r': r, 'theta': theta, 'phi': phi} 
        for r in [num * r_res for num in range(0, 1000)]
        for theta in range(-30, 32, 2)
        for phi in range(-30, 32, 2)]

sin_th = np.sin(np.radians(df['theta'].astype(float)))
cos_th = np.cos(np.radians(df['theta'].astype(float)))
sin_ph = np.sin(np.radians(df['phi'].astype(float)))
cos_ph = np.cos(np.radians(df['phi'].astype(float)))

# DataFrameにデータを追加
df = df.append(data, ignore_index=True)

df['x'] = df['r'] * np.sin(np.radians(df['theta'].astype(float))) * np.cos(np.radians(df['phi'].astype(float)))
df['y'] = df['r'] * np.sin(np.radians(df['phi'].astype(float))) * np.cos(np.radians(df['theta'].astype(float)))
df['z'] = df['r'] * ((1-(np.sin(np.radians(df['theta'].astype(float)))**2)*(np.cos(np.radians(df['phi'].astype(float)))**2)-(np.sin(np.radians(df['phi'].astype(float)))**2)*(np.cos(np.radians(df['theta'].astype(float)))**2))**0.5)
df['r_check'] = (df['x']**2 + df['y']**2 + df['z']**2)**0.5

# データフレームを表示
df.tail()




import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

# 半球のパラメータ
r = 10  # 球の半径
phi, theta = np.mgrid[0:np.pi/2:100j, 0:2*np.pi:100j]  # phiとthetaの範囲を設定

# 極座標から直交座標に変換
x = r * np.sin(phi) * np.cos(theta)
y = r * np.sin(phi) * np.sin(theta)
z = r * np.cos(phi)

# プロット
fig = plt.figure(figsize=(16.0, 12.0))
ax = fig.add_subplot(111, projection='3d')

ax.scatter(df['x'], df['y'], df['z'], alpha=0.01)
# 半球をプロット
ax.plot_surface(x, y, z, alpha=0.2)

# 軸の範囲とラベル設定
ax.set_xlim([-10, 10])
ax.set_ylim([-10, 10])
ax.set_zlim([0, 20])

# 軸の縮尺を等しくする
ax.set_box_aspect([1,1,1])

#ax.tick_params(labelbottom=False, labelleft=False, labelright=False, labeltop=False)

# グラフを表示
plt.show()


# 検証として1 m^3の立方体の密度を考える
立方体の座標範囲はx:-0.50.5, y:-0.50.5, z:nn+1 (n2から6まで1ずつ動かしてみる)
立方体内に含まれる点数をカウントするだけで密度は求まる
## まずは補正せずに計算


density = []
for n in range(1,8):
    df_d = df[(df["x"]<0.5) & (df["x"]>-0.5) & (df["y"]<0.5) & (df["y"]>-0.5) & (df["z"]<n+1) & (df["z"]>n)]
    density.append(len(df_d))
    print("n = {} のときの立方体内の点密度{}".format(n,len(df_d)))
df_d.head()


## カウントする際に半径の2乗を重みにかけて補正計算



adjusted_density = []
for n in range(1,5):
    df_d = df[(df["x"]<0.5) & (df["x"]>-0.5)&(df["y"]<0.5) & (df["y"]>-0.5)&(df["z"]<n+1) & (df["z"]>n)]
    df_d["r^2"] = df_d["r"]**2
    pts_sum = df_d["r^2"].sum()
    adjusted_density.append(pts_sum)
    print("n = {} のときの立方体内の補正点密度{}".format(n,pts_sum))





0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?