42
13

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

numpy.load()で`Object arrays cannot be loaded when allow_pickle=False`が発生する場合の対処法

Posted at
  • numpy 1.16.3 以降

現象

Pythonコードの例

np.load('/path/to/file.npy')

発生するエラーの例

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-37-1db66562b57b> in <module>
----> 1 np.load('tmp.npy')

~/venv/aep/lib/python3.7/site-packages/numpy/lib/npyio.py in load(file, mmap_mode, allow_pickle, fix_imports, encoding)
    451             else:
    452                 return format.read_array(fid, allow_pickle=allow_pickle,
--> 453                                          pickle_kwargs=pickle_kwargs)
    454         else:
    455             # Try a pickle

~/venv/aep/lib/python3.7/site-packages/numpy/lib/format.py in read_array(fp, allow_pickle, pickle_kwargs)
    720         # The array contained Python objects. We need to unpickle the data.
    721         if not allow_pickle:
--> 722             raise ValueError("Object arrays cannot be loaded when "
    723                              "allow_pickle=False")
    724         if pickle_kwargs is None:

ValueError: Object arrays cannot be loaded when allow_pickle=False

原因

numpy v1.16.3 より、numpy.load()関数の挙動が変更されたため。

変更前 変更後
allow_pickleオプションの省略時のデフォルト値はTrue allow_pickleオプションの省略時のデフォルト値はFalse

解決方法

後述するセキュリティ上の懸念がないことを確認した上で、以下のようにallow_pickleオプションを指定してやれば良い。

np.load('/path/to/file.npy', allow_pickle=True)

解説

numpy行列とdtype

numpy行列(np.ndarray)は数値だけでなく文字列やPythonオブジェクトを格納することができる。格納された値の種類は、dtypeという属性へと反映されている。

numpy v1.16.0の脆弱性

Pythonオブジェクトが含まれたnumpy行列(をシリアライズしたファイル)をnp.load()によってでシリアライズする際に、悪意のあるコードを実行できてしまうという脆弱性が報告されている。(ただしこの脆弱性に関しては反論がある)

そこでv1.16.3より、np.load()のデフォルトの挙動が前述したように変更され、dtypeがPythonオブジェクトである場合に、allow_pickle=FalseならばValueErrorをスローするようになった。
より安全サイドへ倒すための仕様変更と言える。

セキュリティ上の懸念

当然のごとく、信頼できないファイルに対してnp.load(allow_pickle=True)してはいけない。前節で述べたように、任意のコードを実行できてしまう可能性がある。

Jupyter等によるデータ整形や機械学習など、アドホックなコードなら普通は問題ない1。注意すべきはPythonを用いたアプリケーション開発者である。

NGな例
ユーザからアップロードされたファイルに対して`np.load(allow_pickle)`する
OKな例
システム内でシリアライズしたファイルを`np.load(allow_pickle)`する

これってBreaking Change じゃないの?

アプリケーションの挙動が変わってしまうので、当然Breaking Change(後方互換性のない変更)だと思う。

Pythonの数値計算系のライブラリには、デフォルト値の変更ならセーフみたいな風潮があるかもしれない。2リビジョンアップだから大丈夫でしょう、とか思っていたら痛い目に合う。
他の言語から参入したアプリケーションエンジニアはよく注意されたい。

  1. 悪意のある同僚(?)からもらった*.npyファイルなら問題ある。

  2. 他の例としてはsklearn.ensemble.RandomForestClassifiern_estimatorのデフォルト値など

42
13
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
42
13

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?