0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

数学証明メモ(連結と弧状連結)

Last updated at Posted at 2017-11-12
  • 大昔の学生の時学んだ数学を再勉強していて、Qiitaの数学記法がノートの代わりとして使えそうなので書いてみます。

問題

位相空間$X$が弧状連結ならXは連結。

証明

$X$は弧状連結であるから
$x_0 \in X$ fix
$\forall x \in X$
曲線 $\psi:[\alpha, \beta] \to X$が存在して、$\psi(\alpha)=x_0 \ ,
\psi(\beta)=x$
$C_x := \psi([\alpha, \beta])$
は連結で$x_0$と$x$を含む。
そこで
$X$の連結部分集合族$\{C_x\}_{x \in X}$を見ると、定義から $\cup_{x \in X}C_x = X$
$x, y \in X$について、$x_0 \in C_x \cap C_y$
よって$C_x \cap C_y \neq \phi$
すなわち$X = \cup_{x \in X}C_x$は連結 (※)

補足(※)

$ (Y_\lambda)_{\lambda \in \Lambda} $
を位相空間 $X$ の連結部分集合族で、 $Y_\lambda \cap Y_\mu \neq \phi$ $(\lambda, \mu \in \Lambda)$ が成立しているなら
$Y = \cup_{\lambda \in \Lambda}Y_\lambda$ は連結部分集合

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?