Lesson6
Sorting
Easy
Triangle
Determine whether a triangle can be built from a given set of edges.
Task description
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5
A[3] = 1 A[4] = 8 A[5] = 20
Triplet (0, 2, 4) is triangular.
Write a function:
class Solution { public int solution(int[] A); }
that, given an array A consisting of N integers, returns 1 if there exists a triangular triplet for this array and returns 0 otherwise.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5
A[3] = 1 A[4] = 8 A[5] = 20
the function should return 1, as explained above. Given array A such that:
A[0] = 10 A[1] = 50 A[2] = 5
A[3] = 1
the function should return 0.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..100,000];
- each element of array A is an integer within the range [−2,147,483,648..2,147,483,647].
Code walkthrough
class Solution {
public int solution(int[] A) {
java.util.Arrays.sort(A);
for (int i = 2; i < A.length; i++) {
if ((long)A[i - 2] + A[i - 1] > A[i]) {
return 1;
}
}
return 0;
}
}
Detected time complexity:
O(N * log(N))