Lesson8
Leader
Easy
Dominator
Find an index of an array such that its value occurs at more than half of indices in the array.
Task description
An array A consisting of N integers is given. The dominator of array A is the value that occurs in more than half of the elements of A.
For example, consider array A such that
A[0] = 3 A[1] = 4 A[2] = 3
A[3] = 2 A[4] = 3 A[5] = -1
A[6] = 3 A[7] = 3
The dominator of A is 3 because it occurs in 5 out of 8 elements of A (namely in those with indices 0, 2, 4, 6 and 7) and 5 is more than a half of 8.
Write a function
class Solution { public int solution(int[] A); }
that, given an array A consisting of N integers, returns index of any element of array A in which the dominator of A occurs. The function should return −1 if array A does not have a dominator.
For example, given array A such that
A[0] = 3 A[1] = 4 A[2] = 3
A[3] = 2 A[4] = 3 A[5] = -1
A[6] = 3 A[7] = 3
the function may return 0, 2, 4, 6 or 7, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..100,000];
- each element of array A is an integer within the range [−2,147,483,648..2,147,483,647].
Source code 1
class Solution {
public int solution(int[] A) {
java.util.HashMap<Integer, Integer> counter = new java.util.HashMap<>();
int dominatorCount = A.length / 2;
for (int i = 0; i < A.length; i++) {
int aCount = 0;
if (counter.containsKey(A[i])) {
aCount = counter.get(A[i]) + 1;
} else {
aCount = 1;
}
if (aCount > dominatorCount) {
return i;
} else {
counter.put(A[i], aCount);
}
}
return -1;
}
}
Detected time complexity:
O(N)
Detected space complexity:
O(N)
Report
Source code 2
class Solution {
public int solution(int[] A) {
if (A == null || A.length == 0) return -1;
if (A.length == 1) return 0;
int[] B = A.clone();
java.util.Arrays.sort(B);
int mode = A.length % 2;
int index = A.length / 2;
int leader;
if (mode == 1 || (mode == 0 && B[index] == B[index - 1] && (index + 1 < B.length && B[index] == B[index + 1]))) {
leader = B[index];
} else {
return -1;
}
int resultIndex = -1;
int counter = 0;
for (int i = 0; i < A.length; i++) {
if (A[i] == leader) {
counter++;
if (resultIndex < 0 ) resultIndex = i;
}
}
return counter > index ? resultIndex : -1;
}
}
Detected time complexity:
O(N*log(N)) or O(N)
Detected space complexity:
O(1)