Qiita Teams that are logged in
You are not logged in to any team

Log in to Qiita Team
Community
OrganizationAdvent CalendarQiitadon (β)
Service
Qiita JobsQiita ZineQiita Blog
34
Help us understand the problem. What is going on with this article?
@yosshi4486

シグモイド関数の微分

More than 3 years have passed since last update.

シグモイド関数の微分は、機械学習の誤差逆伝搬法で登場したが微分の際に意味が分からなかったので高校数学を復習してみた。

前提

sigmoid(z) = \frac{1}{1 + e^{-z}}

結論

f(z) = sigmoid(z) \\

とした時、

f(z)' = (1 - f(z)) \cdot f(z)

導出

シグモイド関数を使いやすく式変形すると以下の式になる。

f(z) = (1 + e^{-z})^{-1} \tag{1}

ここで、

1 + e^{-z} = u  \tag{2}

とおくと、

f(z) = u^{-1} \tag{3}

と、f(z)を表せる。

(2)(3)を微分して

\frac{du}{dz} = -e^{-z} \tag{4}
\frac{dy}{du} = -u^{-2} = -(1 + e^{-z})^{-2} \tag{5}

合成関数の微分の公式に(4)(5)を当てはめて

\frac{dy}{dz} = \frac{1}{(1 + e^{-z})^2} \cdot e^{-z} \tag{6}

(6)を式変形して

\frac{dy}{dz} = \frac{e^{-z}}{1 + e^{-z}} \cdot \frac{1}{1 + e^{-z}} \tag{7}

(7)の右辺の左側を変形して

\frac{e^{-z}}{1 + e^{-z}} = \frac{1 + e^{-z}}{1 + e^{-z}} - \frac{1}{1 + e^{-z}} \tag{8}

(7)に(8)を当てはめると

\frac{dy}{dz} =  \left( \frac{1 + e^{-z}}{1 + e^{-z}} - \frac{1}{1 + e^{-z}} \right ) \cdot \frac{1}{1 + e^{-z}} \tag{9}

シグモイド関数の

f(z) = \frac{1}{1 + e^{-z}}

を(9)に当てはめられるので

f(z)' = (1 - f(x)) \cdot f(x)

となり、最初に示した形になる。

合成関数の微分

\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}

参考

シグモイド関数を微分してみたよ
※参考サイトでは、dz/du=e^-zとしていますが間違っており、正しくは-e^-zなのでご注意ください。

合成関数の微分公式と例題7問

34
Help us understand the problem. What is going on with this article?
Why not register and get more from Qiita?
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away
yosshi4486
アプリケーション作るのが好きな人

Comments

No comments
Sign up for free and join this conversation.
Sign Up
If you already have a Qiita account Login
34
Help us understand the problem. What is going on with this article?