assign_equiv.v
(** **** 練習問題: ★★, recommended (assign_aequiv) *)
Theorem assign_aequiv : forall X e,
aequiv (AId X) e ->
cequiv SKIP (X ::= e).
Proof.
move=> X e H. split => HH.
- inversion HH. subst.
assert (st' = update st' X (st' X)).
- apply functional_extensionality => x.
by rewrite update_same; reflexivity.
- set (Hass := E_Ass st' e (st' X) X).
rewrite <- H0 in Hass. apply Hass.
rewrite <- (H st'). reflexivity.
- inversion HH. subst.
replace (update st X (aeval st e)) with st.
- constructor.
- apply functional_extensionality => x.
rewrite <- (H st).
rewrite update_same; reflexivity.
Qed.