2
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

RedshiftにSSH接続してread_sql, to_sqlする方法

Last updated at Posted at 2021-11-17

セキュリティの観点から、AWS Redshiftへは踏み台経由でSSH接続する場合が多いと思います。
そこで、今回はデータサイエンティスト・アナリストが良く使うであろうpandas.read_sql()や、ORMのSQLAlchemyを利用したpandas.DataFrameのto_sql()を、踏み台経由でSSH接続したRedshiftで使用する方法を紹介します。

ライブラリ

psycopg2-binary==2.9.1
sqlalchemy==1.4.25
sshtunnel==0.4.0

メソッド定義

新たにread_sql, to_sqlメソッドを定義する。

import psycopg2

from sqlalchemy import create_engine

from sshtunnel import SSHTunnelForwarder


def read_sql(ssh_host, ssh_port, ssh_username, ssh_pkey, dbhost, dbport, dbuser, dbpassword, database, query):
    # Redshiftに接続
    with SSHTunnelForwarder(
        (ssh_host, ssh_port),
        ssh_username=ssh_username,
        # 秘密鍵
        ssh_pkey=ssh_pkey,
        remote_bind_address=(dbhost, dbport),
    ) as server:
        conn = {
            'host': 'localhost',
            'port': server.local_bind_port,
            'user': dbuser,
            'password': dbpassword,
            'database': database
        }
        with psycopg2.connect(**conn) as conn:
            return pd.read_sql(query, con=conn)


def to_sql(ssh_host, ssh_port, ssh_username, ssh_pkey, dbhost, dbport, dbuser, dbpassword, database, schema, table_name, df, if_exists):
    # Redshiftに接続
    with SSHTunnelForwarder(
        (ssh_host, ssh_port),
        ssh_username=ssh_username,
        # 秘密鍵
        ssh_pkey=ssh_pkey,
        remote_bind_address=(dbhost, dbport),
    ) as server:
        engine = create_engine(f'postgresql://{user}:{password}@localhost:{server.local_bind_port}/{database}')
        df.to_sql(table_name, engine, schema=schema, index=False, if_exists=if_exists)

使い方

接続情報

踏み台サーバー、接続先のDBの情報を記載する。

config = {
    # ssh config
    'ssh_host': '*****',
    'ssh_port': *****,
    'ssh_username': '*****',
    'ssh_pkey': '*****', # 秘密鍵の絶対パス
    
    # db config
    'dbhost': '*****',
    'dbport': *****,
    'database': '*****',
    'dbuser': '*****',
    'dbpassword': '*****'
}

read

# read sql from redshift
read_sql(**config, query='select top 10 * from hoge.fuga')

write

# create from pandas DataFrame into redshift
df = pd.DataFrame([{'Name': 'Ram', 'Age': 50},
   {'Name': 'Bhim', 'Age': 23},
   {'Name': 'Shyam', 'Age': 25}]
)
to_sql(**config, schema='sandbox', table_name='test', df=df, if_exists='replace')
2
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
2
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?