LoginSignup
6
4
記事投稿キャンペーン 「2024年!初アウトプットをしよう」

Llama 2をColab上でQLoRAを使ってFinetuningする手順

Last updated at Posted at 2024-01-05

はじめに

あけましておめでとうございます。

昨年は仕事で生成AIの利活用/PoCに取り組んできました。
プロンプトやRAGといった手法は使ってきたものの、Finetuningは正直なところ見て見ぬそぶり、というか。
というのも、とある頼りにしている方から伺った「Finetuningは最終手段ですよ!」というアドバイスもあり。
確かに最終手段ではあると思うんですが、手段を増やす 深みにはまる にはFinetuningは避けては通れないかなと。

ということで、新年のことはじめです。

概要

方法

概要に記載の記事を参考にすればOK

準備

  • Google Colabの環境
    なければ作っておく。T4 GPUを使った

手順

基本的には、上の記事をたどっていけばFinetuningいけます
メモレベルですが、自分が実行した順に記載しておきます

・ライブラリのインストール

!pip install -q accelerate==0.21.0 peft==0.4.0 bitsandbytes==0.40.2 transformers==4.31.0 trl==0.4.7
import os
import torch
from datasets import load_dataset
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    HfArgumentParser,
    TrainingArguments,
    pipeline,
    logging,
)
from peft import LoraConfig, PeftModel
from trl import SFTTrainer

llama-2-7b-chat-hfモデルを、mlabonne/guanaco-llama2-1kでFinetuningしていく。
その他、各種設定などを定義していく

# The model that you want to train from the Hugging Face hub
model_name = "NousResearch/llama-2-7b-chat-hf"

# The instruction dataset to use
dataset_name = "mlabonne/guanaco-llama2-1k"

# Fine-tuned model name
new_model = "llama-2-7b-miniguanaco"

################################################################################
# QLoRA parameters
################################################################################

# LoRA attention dimension
lora_r = 64

# Alpha parameter for LoRA scaling
lora_alpha = 16

# Dropout probability for LoRA layers
lora_dropout = 0.1

################################################################################
# bitsandbytes parameters
################################################################################

# Activate 4-bit precision base model loading
use_4bit = True

# Compute dtype for 4-bit base models
bnb_4bit_compute_dtype = "float16"

# Quantization type (fp4 or nf4)
bnb_4bit_quant_type = "nf4"

# Activate nested quantization for 4-bit base models (double quantization)
use_nested_quant = False

################################################################################
# TrainingArguments parameters
################################################################################

# Output directory where the model predictions and checkpoints will be stored
output_dir = "./results"

# Number of training epochs
num_train_epochs = 1

# Enable fp16/bf16 training (set bf16 to True with an A100)
fp16 = False
bf16 = False

# Batch size per GPU for training
per_device_train_batch_size = 4

# Batch size per GPU for evaluation
per_device_eval_batch_size = 4

# Number of update steps to accumulate the gradients for
gradient_accumulation_steps = 1

# Enable gradient checkpointing
gradient_checkpointing = True

# Maximum gradient normal (gradient clipping)
max_grad_norm = 0.3

# Initial learning rate (AdamW optimizer)
learning_rate = 2e-4

# Weight decay to apply to all layers except bias/LayerNorm weights
weight_decay = 0.001

# Optimizer to use
optim = "paged_adamw_32bit"

# Learning rate schedule (constant a bit better than cosine)
lr_scheduler_type = "constant"

# Number of training steps (overrides num_train_epochs)
max_steps = -1

# Ratio of steps for a linear warmup (from 0 to learning rate)
warmup_ratio = 0.03

# Group sequences into batches with same length
# Saves memory and speeds up training considerably
group_by_length = True

# Save checkpoint every X updates steps
save_steps = 25

# Log every X updates steps
logging_steps = 25

################################################################################
# SFT parameters
################################################################################

# Maximum sequence length to use
max_seq_length = None

# Pack multiple short examples in the same input sequence to increase efficiency
packing = False

# Load the entire model on the GPU 0
device_map = {"": 0}

Finetuningの実行

# Load dataset (you can process it here)
dataset = load_dataset(dataset_name, split="train")

# Load tokenizer and model with QLoRA configuration
compute_dtype = getattr(torch, bnb_4bit_compute_dtype)

bnb_config = BitsAndBytesConfig(
    load_in_4bit=use_4bit,
    bnb_4bit_quant_type=bnb_4bit_quant_type,
    bnb_4bit_compute_dtype=compute_dtype,
    bnb_4bit_use_double_quant=use_nested_quant,
)

# Check GPU compatibility with bfloat16
if compute_dtype == torch.float16 and use_4bit:
    major, _ = torch.cuda.get_device_capability()
    if major >= 8:
        print("=" * 80)
        print("Your GPU supports bfloat16: accelerate training with bf16=True")
        print("=" * 80)

# Load base model
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    quantization_config=bnb_config,
    device_map=device_map
)
model.config.use_cache = False
model.config.pretraining_tp = 1

# Load LLaMA tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right" # Fix weird overflow issue with fp16 training

# Load LoRA configuration
peft_config = LoraConfig(
    lora_alpha=lora_alpha,
    lora_dropout=lora_dropout,
    r=lora_r,
    bias="none",
    task_type="CAUSAL_LM",
)

# Set training parameters
training_arguments = TrainingArguments(
    output_dir=output_dir,
    num_train_epochs=num_train_epochs,
    per_device_train_batch_size=per_device_train_batch_size,
    gradient_accumulation_steps=gradient_accumulation_steps,
    optim=optim,
    save_steps=save_steps,
    logging_steps=logging_steps,
    learning_rate=learning_rate,
    weight_decay=weight_decay,
    fp16=fp16,
    bf16=bf16,
    max_grad_norm=max_grad_norm,
    max_steps=max_steps,
    warmup_ratio=warmup_ratio,
    group_by_length=group_by_length,
    lr_scheduler_type=lr_scheduler_type,
    report_to="tensorboard"
)

# Set supervised fine-tuning parameters
trainer = SFTTrainer(
    model=model,
    train_dataset=dataset,
    peft_config=peft_config,
    dataset_text_field="text",
    max_seq_length=max_seq_length,
    tokenizer=tokenizer,
    args=training_arguments,
    packing=packing,
)

# Train model
trainer.train()

# Save trained model
trainer.model.save_pretrained(new_model)

30分ほどでFinetuning完了
参考記事と同じように実行してみる

# Ignore warnings
logging.set_verbosity(logging.CRITICAL)

# Run text generation pipeline with our next model
prompt = "What is a large language model?"
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
result = pipe(f"<s>[INST] {prompt} [/INST]")
print(result[0]['generated_text'])

成功したみたい

<s>[INST] What is a large language model? [/INST] A large language model is a type of artificial intelligence that is trained on a large dataset of text to generate human-like language. It is typically trained on a dataset of text that is much larger than the dataset used for smaller language models. This allows the large language model to learn more complex and nuanced patterns in language, and to generate more coherent and natural-sounding text.

Large language models are often used for tasks such as language translation, text summarization, and chatbots. They are also used for more advanced tasks such as writing articles, generating creative content, and even composing music.

まとめ

記事だとHugging FaceへPushする方法も載ってましたが、今回はここまで。

Google Colabのおかげで簡単にFinetuningが試せておもしろい。
modelやdataset、パラメータもいろいろ変えて試してみたい。

参考URL

https://mlabonne.github.io/blog/posts/Fine_Tune_Your_Own_Llama_2_Model_in_a_Colab_Notebook.html
https://gist.github.com/younesbelkada/9f7f75c94bdc1981c8ca5cc937d4a4da

6
4
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
6
4