0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

昔作ったCNNの簡単な(2層)モデルが出てきたので、貼っておく

Posted at

はじめに

昔、画像認識での正誤判定にkerasでモデル作成を行ったことがあるが、
その際のソースコードのかけらを発見したので、Qiita上にサルベージしておく。

CNN

2_layer_cnn.py
from keras.models import Sequential
from keras.layers import Activation, Dense, Dropout
from keras.utils.np_utils import to_categorical
from keras.optimizers import Adagrad
from keras.optimizers import Adam
import numpy as np
from PIL import Image
import os

# 学習用のデータを作る.
image_list = []
label_list = []

for dir in os.listdir("data/dog/ForFinalTrain/"):
    dir1 = "data/dog/ForFinalTrain/" + dir
    label = 0

    if dir == "Normal":
        label = 0
    elif dir == "Tumor":
        label = 1

    for file in os.listdir(dir1):
        if file != "Thumbs.db":
            label_list.append(label)
            filepath = dir1 + "/" + file
            image = np.array(Image.open(filepath).resize((25,25)))
            image = image.transpose(2,0,1)
            image = image.reshape(1, image.shape[0] * image.shape[1] * image.shape[2]).astype("float32")[0]
            image_list.append(image / 255.)

image_list = np.array(image_list)
Y = to_categorical(label_list)

'''
model = Sequential()
model.add(Dense(200, input_dim=1875))
model.add(Activation("relu"))
model.add(Dropout(0.2))

model(Dense(200))
model.add(Activation("relu"))
model.add(Dropout(0.2))

model.add(Dense(2))
model.add(Activation("softmax"))

opt = Adam(Ir=0.001)

model.compile(loss="categorical_crossentropy",optimizer=opt, metrics=["accuracy"])
'''
model = Sequential()
model.add(Dense(32, activation='relu', input_dim=1875))
model.add(Dense(2, activation='sigmoid'))
model.compile(optimizer='rmsprop',
              loss='binary_crossentropy',
              metrics=['accuracy'])

model.fit(image_list, Y,nb_epoch=1500, batch_size=100, validation_split=0.1)

total = 0.
ok_count = 0.

for dir in os.listdir("data/dog/ForFinalTrain/"):
    if dir == "Thumbs.db":
        continue

    dir1 = "data/dog/ForFinalTest/" + dir
    label = 0

    if dir == "Normal":
        label = 0
    elif dir == "Abnormal":
        label = 1

    for file in os.listdir(dir1):
        if file != "Thumbs.db":
            label_list.append(label)
            filepath = dir1 + "/" + file
            image = np.array(Image.open(filepath).resize((25, 25)))
            print(filepath)
            image = image.transpose(2, 0, 1)
            image = image.reshape(1, image.shape[0] * image.shape[1] * image.shape[2]).astype("float32")[0]
            result = model.predict_classes(np.array([image / 255.]))
            print("label:", label, "result:", result[0])

            total += 1.

            if label == result[0]:
                ok_count += 1.

print("seikai: ", ok_count / total * 100, "%")
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?