1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

Deploying Spark jobs on Amazon EKSをやってみた

Posted at

はじめに

EKS上でSparkを動作させる記事を見つけたので、記載されている内容に沿って試してみました。
参照記事:https://aws.amazon.com/jp/blogs/opensource/deploying-spark-jobs-on-amazon-eks/

やったこと

  • S3バケット作成
  • IAMポリシー作成
  • EKSクラスター作成
  • ECRレポジトリ作成
  • DockerイメージBuild/Push
  • Spark Job実行

S3バケットの作成

aws s3 mb s3://y-smp-bucket01

IAMポリシーの作成

ポリシーをpolicyファイルとして定義

policy
cat << EOF > policy
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": "s3:*",
            "Resource": "*"
        }
    ]
}
EOF

ポリシー作成

aws iam create-policy --policy-name eks2s3 --policy-document file://policy

EKSクラスター作成

EKSクライアントインストール

curl --silent --location "https://github.com/weaveworks/eksctl/releases/latest/download/eksctl_$(uname -s)_amd64.tar.gz" | tar xz -C /tmp
sudo mv /tmp/eksctl /usr/local/bin

eksctl.yamlに作成したポリシーのarnを設定

amazon-eks-apache-spark-etl-sample/example/eksctl.yaml
apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
  name: spark-cluster
  region: us-east-1
  version: "1.14"

availabilityZones: ["us-east-1a", "us-east-1b","us-east-1c"]

nodeGroups:
  - name: spark-nodes
    instanceType: m5.xlarge
    volumeSize: 30
    desiredCapacity: 4
    privateNetworking: true
    maxPodsPerNode: 10
    iam:
      attachPolicyARNs:
        - arn:aws:iam::aws:policy/AmazonEKSWorkerNodePolicy
        - arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy
-       - <YOUR_AWS_IAM_POLICY_ARN>
+       - arn:aws:iam::xxxxxxxxxxxx:policy/eks2s3

EKSクラスタ作成

eksctl create cluster -f example/eksctl.yaml

事前にインストールするのを忘れたので、後からkubectlインストール

curl -LO "https://storage.googleapis.com/kubernetes-release/release/$(curl -s https://storage.googleapis.com/kubernetes-release/release/stable.txt)/bin/linux/amd64/kubectl"
curl -LO https://storage.googleapis.com/kubernetes-release/release/v1.14.0/bin/linux/amd64/kubectl
chmod +x ./kubectl
sudo mv ./kubectl /usr/local/bin/kubectl

kubecltバージョンが1.14であることを確認

kubectl version --client

認証設定

aws eks --region us-east-1 update-kubeconfig --name spark-cluster

ECR作成

レポジトリ作成

aws ecr create-repository --repository-name eks/spark

Spark上で動作するアプリケーションのイメージをBuild

Dependency Resolutionに失敗するのでbuild.sbtに記載されているTypesafeレポジトリのプロトコルをhttpからhttpsへ変更

amazon-eks-apache-spark-etl-sample/build.sbt
- resolvers += "Typesafe Repository" at "http://repo.typesafe.com/typesafe/releases/"
+ resolvers += "Typesafe Repository" at "https://repo.typesafe.com/typesafe/releases/"

DockerイメージをBuild

sudo docker build -t xxxxxxxxxxxx.dkr.ecr.us-east-1.amazonaws.com/eks/spark:v1.0 .

ECRレジストリ認証設定

aws ecr get-login-password --region us-east-1 | sudo docker login --username AWS --password-stdin xxxxxxxxxxxx.dkr.ecr.us-east-1.amazonaws.com

イメージPush

sudo docker push xxxxxxxxxxxx.dkr.ecr.us-east-1.amazonaws.com/eks/spark:v1.0

RBAC変更

SparkがJobをサブミットできるようにRBACを変更

kubectl apply -f example/kubernetes/spark-rbac.yaml

Spark BaseイメージBuild

spark-submitを実行するイメージをBuild&Push

sudo docker build --target=spark -t xxxxxxxxxxxx.dkr.ecr.us-east-1.amazonaws.com/eks/spark:v2.4.4 .
sudo docker push xxxxxxxxxxxx.dkr.ecr.us-east-1.amazonaws.com/eks/spark:v2.4.4

spark-job.yaml実行

spark-job.yaml編集

amazon-eks-apache-spark-etl-sample/example/kubernetes/spark-job.yaml
apiVersion: batch/v1
kind: Job
metadata:
  name: spark-on-eks
spec:
  template:
    spec:
      containers:
        - name: spark
-          image: <REPO_NAME>/spark:v2.4.4
+          image: xxxxxxxxxxxx.dkr.ecr.us-east-1.amazonaws.com/eks/spark:v2.4.4
          command: [
            "/bin/sh",
            "-c",
            "/opt/spark/bin/spark-submit \
            --master k8s://https://10.100.0.1:443 \
            --deploy-mode cluster \
            --name spark-on-eks \
            --class ValueZones \
            --conf spark.executor.instances=4 \
            --conf spark.executor.memory=10G \
            --conf spark.executor.cores=2 \
            --conf spark.sql.shuffle.partitions=60 \
-           --conf spark.kubernetes.container.image=<REPO_NAME>/<IMAGE_NAME>:<TAG> \
+           --conf spark.kubernetes.container.image=xxxxxxxxxxxx.dkr.ecr.us-east-1.amazonaws.com/eks/spark:v1.0 \
            --conf spark.hadoop.fs.s3a.impl=org.apache.hadoop.fs.s3a.S3AFileSystem \
            --conf spark.kubernetes.container.image.pullPolicy=Always \
            --conf spark.kubernetes.authenticate.driver.serviceAccountName=spark \
            local:///opt/spark/jars/spark-on-eks-assembly-v1.0.jar \
            \"s3a://nyc-tlc/trip data/yellow_tripdata_2018*.csv\" \
            \"s3a://nyc-tlc/trip data/green_tripdata_2018*.csv\" \
            \"s3a://nyc-tlc/misc/taxi _zone_lookup.csv\" \
-           \"s3a://<YOUR_S3_BUCKET>\""
+           \"s3a://y-smp-bucket01\""
          ]
      serviceAccountName: spark
      restartPolicy: Never
  backoffLimit: 4

Job実行前のPodを確認

ubuntu@ip-10-0-1-96:~/amazon-eks-apache-spark-etl-sample$ kubectl get pods
No resources found.

Job実行

kubectl apply -f example/kubernetes/spark-job.yaml

Job実行前のPodを確認
spark-submitにて指定したパラメーターに沿ってPodが作成されていることが確認できる

ubuntu@ip-10-0-1-96:~/amazon-eks-apache-spark-etl-sample$ kubectl get pods
NAME                                READY   STATUS    RESTARTS   AGE
spark-on-eks-1605426627391-driver   1/1     Running   0          45s
spark-on-eks-1605426627391-exec-1   1/1     Running   0          30s
spark-on-eks-1605426627391-exec-2   1/1     Running   0          30s
spark-on-eks-1605426627391-exec-3   1/1     Running   0          30s
spark-on-eks-1605426627391-exec-4   1/1     Running   0          30s
spark-on-eks-qck66                  1/1     Running   0          61s

Jobの終了に伴いPodが終了していることを確認

ubuntu@ip-10-0-1-96:~/amazon-eks-apache-spark-etl-sample$ kubectl get pods
NAME                                READY   STATUS      RESTARTS   AGE
spark-on-eks-1605431350121-driver   0/1     Completed   0          8m35s
spark-on-eks-cstdh                  0/1     Completed   0          8m52s

まとめ

Spark Driverからの要求に応じてKubernetesがリソーススケジューリングを行なっていることが確認できました。

1
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?