0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

競プロ備忘録

Last updated at Posted at 2023-01-03

目的

AtCoder等の競技プログラミング問題において、考察または実装を短縮できるような知識だが、ライブラリ化する程でもないものを備忘録として記録しておく

LCM, GCD

  • 実装
def gcd(x, y):
    while y > 0:
        x, y = y, x%y
    return x

def lcm(x, y):
    return x*y//gcd(x, y)

LCM(least common multiple)は最小公倍数、GCD(greatest common divisor)は最大公約数を表す。覚えておくと自慢できる

トポロジカルソート

def topological_sort(graph):
    n = len(graph)
    graph_inv = [set() for _ in range(n)]
    for i in range(n):
        for j in graph[i]:
            graph_inv[j].add(i)
    
    todo = [i for i in range(n) if len(graph_inv[i]) == 0]
    li = []
    while todo:
        t = todo.pop()
        li.append(t)
        for i in graph[t]:
            graph_inv[i].remove(t)
            if len(graph_inv[i]) == 0:
                todo.append(i)
    
    if len(li) == n: return li
    else: return None
  • トポロジカルソートできる場合はソート後リスト、できない場合はNoneを返り値とする

素数列挙

def enumerate_prime(n):
    is_prime_list = [True]*(n+1)
    is_prime_list[0], is_prime_list[1] = 0, 0
    for i in range(2, int(n**(1/2))+1):
        if is_prime_list[i] == False: continue
        for j in range(i*i, n+1, i):
            is_prime_list[j] = False
    prime_list = [i for i in range(n+1) if is_prime_list[i]]
    return prime_list

戻り値はn以下の素数リスト

マージソート

def merge_sort(li, key=lambda x: x):
    todo = [(0, len(li))]
    seen = set()
    while todo:
        l, r = todo[-1]
        if (l, r) in seen or r-l <= 2:
            mid = (l+r)//2
            cursor = mid
            tmp = []
            for i in range(l, mid):
                while cursor < r and key(li[cursor]) <= key(li[i]):
                    tmp.append(li[cursor])
                    cursor += 1
                tmp.append(li[i])
            tmp.extend(li[cursor:r])
            li[l:r] = tmp
            todo.pop()
        else:
            todo.append(((l+r)//2, r))
            todo.append((l, (l+r)//2))
            seen.add((l, r))
  • あまり速くない

XOR基底

def find_xor_base(a_list):
    base_list = []
    for a in a_list:
        for base in base_list:
            a = min(a, a^base)
        if a > 0:
            for i in range(len(base_list)):
                base_list[i] = min(base_list[i], base_list[i]^a)
            base_list.append(a)
    return sorted(base_list)

Mo's Algorithm

def mo_algorithm(n, query_list, add, sub, get):
    q = len(query_list)
    sq = int(q**(1/2)+1)
    bucket_list = [[] for _ in range(sq)]
    for i in range(q):
        l, r = query_list[i]
        ind = l * sq // n
        bucket_list[ind].append((l, r, i))
    
    for i in range(sq):
        if i & 1: bucket_list[i].sort(key=lambda x: -x[1])
        else: bucket_list[i].sort(key=lambda x: x[1])
    cl, cr = 0, 0
    ans_list = [-1]*q
    for bucket in bucket_list:
        for l, r, ind in bucket:
            while l < cl:
                cl -= 1
                add(cl)
            while cr < r:
                add(cr)
                cr += 1
            while cl < l:
                sub(cl)
                cl += 1
            while r < cr:
                cr -= 1
                sub(cr)
            ans_list[ind] = get()
    return ans_list

Suffix Array

ここに書いてあることが全て

強連結成分分解

ここに書いてあることが全て

ハフマン符号化

p_listは、各文字の出現比

from heapq import heappush, heappop, heapify

def huffman_encoding(p_list):
    n = len(p_list)
    todo = [(p, i) for i, p in enumerate(p_list)]
    heapify(todo)
    tree = [None]*n
    while len(todo) > 1:
        p1, t1 = heappop(todo)
        p2, t2 = heappop(todo)
        
        tree.append(None)
        p3, t3 = p1+p2, len(tree)-1
        tree[t1] = (t3, "0")
        tree[t2] = (t3, "1")
        heappush(todo, (p3, t3))
    
    s_list = []
    for i in range(n):
        li = []
        cursor = i
        while tree[cursor]:
            cursor, x = tree[cursor]
            li.append(x)
        s_list.append("".join(li))
    
    return s_list

単語⇄辞書順index変換

patternsには単語に出現する文字を入力

class WordIndexConverter:
    def __init__(self, patterns, MAX_INDEX=10**19):
        self.patterns = patterns
        self.patterns_dict = {u: i for i, u in enumerate(self.patterns)}
        self.MAX_INDEX = MAX_INDEX
        self.cycle_list = [1]
        self.start_list = [1]
        while self.start_list[-1] < MAX_INDEX:
            self.cycle_list.append(self.cycle_list[-1]*len(self.patterns))
            self.start_list.append(self.start_list[-1] + self.cycle_list[-1])
    
    def word_to_idx(self, word):
        idx = 0
        if len(word) > len(self.cycle_list): return float('inf')
        for i, w in enumerate(word[::-1]):
            x = self.patterns_dict[w]+1
            idx += x*self.cycle_list[i]
        if idx > self.MAX_INDEX: return float('inf')
        else: return idx
    
    def idx_to_word(self, idx):
        if idx > self.MAX_INDEX: raise Exception("idx must not be higher than MAX_INDEX")
        w_list = []
        for cycle, start in zip(self.cycle_list[::-1], self.start_list[::-1]):
            x = (idx - start) // cycle
            if x < 0: continue
            w = self.patterns[x]
            w_list.append(w)
            idx -= (x+1) * cycle
        word = "".join(w_list)
        return word
0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?