0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

コーシー・シュワルツの不等式(テスト投稿)

Last updated at Posted at 2015-11-16

コーシー・シュワルツの不等式

 コーシー・シュワルツの不等式は下記のような形をしている。

( \sum_{k=1}^n a_k b_k )^2 \leq
( \sum_{k=1}^n a_k^2 ) ( \sum_{k=1}^n b_k^2 )

これを証明してみよう。まず下三角集合$S_L$, 対角集合$S_D$, 上三角集合$S_U$を次のように定義しておく。

S_{L} = \left \{ (i, j) | 1 \le i \le n, 1 \le j \le n, i > j \right \}
S_{D} = \left \{ (i, j) | 1 \le i \le n, 1 \le j \le n, i = j \right \}
S_{U} = \left \{ (i, j) | 1 \le i \le n, 1 \le j \le n, i < j \right \}

もちろん、正方集合$S$を次のように定義すると、$S$は$S_L, S_D, S_U$の直和である。

S = \left \{ (i, j) | 1 \le i \le n, 1 \le j \le n \right \}

すなわち、次が成り立つ。

\begin{align}
S &= S_L \cup S_D \cup S_U \\
\emptyset &= S_L \cap S_D = S_D \cap S_U = S_U \cap S_L
\end{align}

右辺は次のように変形できる。

\begin{align}
&( \sum_{k=1}^n a_k^2 ) ( \sum_{k=1}^n b_k^2 ) \\
=& ( \sum_{i=1}^n a_i^2 ) ( \sum_{j=1}^n b_j^2 ) \\
=& \sum_{i=1}^n \sum_{j=1}^n a_i^2 b_j^2 \\
=& \sum_{(i, j) \in S_L} a_i^2 b_j^2 + \sum_{(i, j) \in S_D} a_i^2 b_j^2 + \sum_{(i, j) \in S_U} a_i^2 b_j^2 \\
=& \sum_{(i, j) \in S_L} (a_i^2 b_j^2 + a_j^2b_i^2) + \sum_{(i, j) \in S_D} a_i^2 b_j^2
\end{align}

左辺は次のように変形できる。

\begin{align}
&( \sum_{k=1}^n a_k b_k )^2 \\
=& ( \sum_{i=1}^n a_ib_i ) ( \sum_{j=1}^n a_jb_j ) \\
=& \sum_{i=1}^n \sum_{j=1}^n a_ia_jb_ib_j \\
=& \sum_{(i, j) \in S_L} a_ia_jb_ib_j + \sum_{(i, j) \in S_D} a_ia_jb_ib_j + \sum_{(i, j) \in S_U} a_ia_jb_ib_j \\
=& \sum_{(i, j) \in S_L} (a_ib_ia_jb_j+a_jb_ja_ib_i) + \sum_{(i, j) \in S_D} a_ia_jb_ib_j \\
=& 2 \sum_{(i, j) \in S_L} a_ib_ia_jb_j + \sum_{(i, j) \in S_D} a_ia_jb_ib_j \\
\end{align}

よって、次の結果が得られる。

\begin{align}
&(右辺) - (左辺) \\
=& \sum_{(i, j) \in S_L} (a_i^2 b_j^2 - 2a_ib_ia_jb_j + a_j^2b_i^2) \\
=& \sum_{(i, j) \in S_L} (a_i b_j - a_jb_i)^2 \ge 0
\end{align}
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?