0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

ニューラルネットワークでワインの品質判定してみた【ワインの品質判定①】

Last updated at Posted at 2024-06-01

はじめに

ニューラルネットワークでワインの品質判定をやってみたので、紹介します。

プログラム

ワインの特徴量と品質が記されたデータセットをURLから持ってきて、
特徴量からワインの品質を求めるようなプログラムになってます。

# 必要なライブラリのインポート
import numpy as np  # 数値計算を効率的に行うためのライブラリ
import pandas as pd  # データフレームを扱うためのライブラリ
from tensorflow import keras  # ニューラルネットワークを構築・訓練するためのライブラリ
from tensorflow.keras import layers  # ニューラルネットワークの層を作成するためのモジュール
from sklearn.model_selection import train_test_split  # データを訓練用とテスト用に分割するための関数
from sklearn.preprocessing import StandardScaler  # データを標準化するためのクラス
from sklearn.metrics import accuracy_score  # 正解率を計算するための関数

# データセットの読み込み
df = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv', sep=';')

# データの前処理
df = df.replace('?', np.nan).dropna()  # '?'を欠損値として扱い、欠損値を含む行を削除
for column in df.columns:
    df[column] = df[column].astype(float)  # 全ての列のデータタイプをfloatに変換

# 品質をカテゴリ変数に変換
df['quality'] = pd.Categorical(df['quality'])  # 'quality'列をカテゴリ変数に変換

# 特徴量と目的変数の指定
X = df.drop('quality', axis=1)  # 'quality'列を除いたデータを特徴量として使用
y = df['quality'].cat.codes  # 'quality'列のカテゴリを数値に変換して目的変数として使用

# データの標準化
scaler = StandardScaler()  # StandardScalerのインスタンスを作成
X_scaled = scaler.fit_transform(X)  # 特徴量データを標準化

# 訓練データとテストデータに分割
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=0)  # データを訓練用とテスト用に分割

# モデルの構築
model = keras.Sequential([
    layers.Dense(512, activation='relu', input_shape=[X_train.shape[1]]),  # 入力層として512ユニットの全結合層
    layers.Dense(256, activation='relu'),  # 256ユニットの全結合層
    layers.Dense(128, activation='relu'),  # 128ユニットの全結合層
    layers.Dense(64, activation='relu'),   # 64ユニットの全結合層
    layers.Dense(32, activation='relu'),   # 32ユニットの全結合層
    layers.Dense(y.nunique(), activation='softmax')  # 出力層として、品質の種類数に等しいユニット数の全結合層
])

# モデルのコンパイル
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])  # モデルをコンパイル

# モデルの訓練
model.fit(X_train, y_train, validation_split=0.2, epochs=50, batch_size=10)  # モデルを訓練

# モデルの評価
loss, accuracy = model.evaluate(X_test, y_test)  # テストデータでモデルを評価
print(f'テストセットの損失: {loss:.4f}')  # テストセットの損失を表示
print(f'テストセットの正解率: {accuracy:.4f}')  # テストセットの正解率を表示

# 訓練データとテストデータに対する予測
train_predictions = model.predict(X_train)  # 訓練データに対する予測
test_predictions = model.predict(X_test)  # テストデータに対する予測

# 正解率の計算
train_accuracy = accuracy_score(y_train, np.argmax(train_predictions, axis=1))  # 訓練データの正解率を計算
test_accuracy = accuracy_score(y_test, np.argmax(test_predictions, axis=1))  # テストデータの正解率を計算
print(f'正解率(train): {train_accuracy:.3f}')  # 訓練データの正解率を表示
print(f'正解率(test): {test_accuracy:.3f}')  # テストデータの正解率を表示

実行結果

実行結果は以下のような感じでした。
正解率が62.8%なので、非常にビミョーな感じ。。。

C:\Python\wine>python nn7.py
2024-06-01 20:38:32.204349: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: SSE SSE2 SSE3 SSE4.1 SSE4.2 AVX AVX2 AVX_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
Epoch 1/50
103/103 [==============================] - 2s 7ms/step - loss: 1.1503 - accuracy: 0.5103 - val_loss: 0.9736 - val_accuracy: 0.5664
Epoch 2/50
103/103 [==============================] - 0s 3ms/step - loss: 1.0040 - accuracy: 0.5718 - val_loss: 1.1034 - val_accuracy: 0.5391
Epoch 3/50
103/103 [==============================] - 0s 3ms/step - loss: 0.9654 - accuracy: 0.5836 - val_loss: 0.9643 - val_accuracy: 0.5430
Epoch 4/50
103/103 [==============================] - 0s 3ms/step - loss: 0.9268 - accuracy: 0.6129 - val_loss: 0.9858 - val_accuracy: 0.5938
Epoch 5/50
103/103 [==============================] - 0s 3ms/step - loss: 0.8943 - accuracy: 0.6266 - val_loss: 0.9449 - val_accuracy: 0.5938
Epoch 6/50
103/103 [==============================] - 0s 3ms/step - loss: 0.8839 - accuracy: 0.6305 - val_loss: 0.9369 - val_accuracy: 0.5625
Epoch 7/50
103/103 [==============================] - 0s 4ms/step - loss: 0.8650 - accuracy: 0.6383 - val_loss: 0.9243 - val_accuracy: 0.5898
Epoch 8/50
103/103 [==============================] - 0s 3ms/step - loss: 0.8407 - accuracy: 0.6491 - val_loss: 0.8854 - val_accuracy: 0.6133
Epoch 9/50
103/103 [==============================] - 0s 3ms/step - loss: 0.8131 - accuracy: 0.6647 - val_loss: 0.9356 - val_accuracy: 0.5859
Epoch 10/50
103/103 [==============================] - 0s 3ms/step - loss: 0.8038 - accuracy: 0.6569 - val_loss: 1.0093 - val_accuracy: 0.5625
Epoch 11/50
103/103 [==============================] - 0s 3ms/step - loss: 0.7739 - accuracy: 0.6735 - val_loss: 0.9509 - val_accuracy: 0.5820
Epoch 12/50
103/103 [==============================] - 0s 3ms/step - loss: 0.7499 - accuracy: 0.6745 - val_loss: 0.9690 - val_accuracy: 0.5781
Epoch 13/50
103/103 [==============================] - 0s 3ms/step - loss: 0.7178 - accuracy: 0.6940 - val_loss: 1.0237 - val_accuracy: 0.6172
Epoch 14/50
103/103 [==============================] - 0s 3ms/step - loss: 0.6940 - accuracy: 0.7097 - val_loss: 1.0317 - val_accuracy: 0.5898
Epoch 15/50
103/103 [==============================] - 0s 3ms/step - loss: 0.6759 - accuracy: 0.7077 - val_loss: 1.0377 - val_accuracy: 0.6289
Epoch 16/50
103/103 [==============================] - 0s 3ms/step - loss: 0.6209 - accuracy: 0.7283 - val_loss: 1.0669 - val_accuracy: 0.5938
Epoch 17/50
103/103 [==============================] - 0s 3ms/step - loss: 0.6248 - accuracy: 0.7370 - val_loss: 1.0806 - val_accuracy: 0.5703
Epoch 18/50
103/103 [==============================] - 0s 3ms/step - loss: 0.5565 - accuracy: 0.7625 - val_loss: 1.1467 - val_accuracy: 0.5625
Epoch 19/50
103/103 [==============================] - 0s 3ms/step - loss: 0.5564 - accuracy: 0.7625 - val_loss: 1.0899 - val_accuracy: 0.5977
Epoch 20/50
103/103 [==============================] - 0s 3ms/step - loss: 0.5266 - accuracy: 0.7742 - val_loss: 1.1610 - val_accuracy: 0.6016
Epoch 21/50
103/103 [==============================] - 0s 3ms/step - loss: 0.5038 - accuracy: 0.7918 - val_loss: 1.1768 - val_accuracy: 0.5938
Epoch 22/50
103/103 [==============================] - 0s 3ms/step - loss: 0.4779 - accuracy: 0.8074 - val_loss: 1.2377 - val_accuracy: 0.6016
Epoch 23/50
103/103 [==============================] - 0s 3ms/step - loss: 0.4151 - accuracy: 0.8192 - val_loss: 1.4133 - val_accuracy: 0.5781
Epoch 24/50
103/103 [==============================] - 0s 3ms/step - loss: 0.4273 - accuracy: 0.8240 - val_loss: 1.4031 - val_accuracy: 0.6211
Epoch 25/50
103/103 [==============================] - 0s 3ms/step - loss: 0.3884 - accuracy: 0.8319 - val_loss: 1.4533 - val_accuracy: 0.5898
Epoch 26/50
103/103 [==============================] - 0s 3ms/step - loss: 0.3570 - accuracy: 0.8573 - val_loss: 1.3862 - val_accuracy: 0.6445
Epoch 27/50
103/103 [==============================] - 0s 3ms/step - loss: 0.3153 - accuracy: 0.8690 - val_loss: 1.4960 - val_accuracy: 0.6172
Epoch 28/50
103/103 [==============================] - 0s 3ms/step - loss: 0.3038 - accuracy: 0.8778 - val_loss: 1.5178 - val_accuracy: 0.6094
Epoch 29/50
103/103 [==============================] - 0s 3ms/step - loss: 0.2652 - accuracy: 0.9062 - val_loss: 1.8303 - val_accuracy: 0.5938
Epoch 30/50
103/103 [==============================] - 0s 3ms/step - loss: 0.2647 - accuracy: 0.8935 - val_loss: 1.9841 - val_accuracy: 0.6094
Epoch 31/50
103/103 [==============================] - 0s 3ms/step - loss: 0.2518 - accuracy: 0.9022 - val_loss: 1.6865 - val_accuracy: 0.5859
Epoch 32/50
103/103 [==============================] - 0s 3ms/step - loss: 0.2193 - accuracy: 0.9198 - val_loss: 2.0315 - val_accuracy: 0.5938
Epoch 33/50
103/103 [==============================] - 0s 3ms/step - loss: 0.2294 - accuracy: 0.9120 - val_loss: 1.8131 - val_accuracy: 0.6133
Epoch 34/50
103/103 [==============================] - 0s 3ms/step - loss: 0.1786 - accuracy: 0.9247 - val_loss: 1.9996 - val_accuracy: 0.6016
Epoch 35/50
103/103 [==============================] - 0s 3ms/step - loss: 0.1633 - accuracy: 0.9482 - val_loss: 2.0034 - val_accuracy: 0.6250
Epoch 36/50
103/103 [==============================] - 0s 3ms/step - loss: 0.1438 - accuracy: 0.9501 - val_loss: 2.0639 - val_accuracy: 0.6289
Epoch 37/50
103/103 [==============================] - 0s 3ms/step - loss: 0.2709 - accuracy: 0.9150 - val_loss: 2.0477 - val_accuracy: 0.6094
Epoch 38/50
103/103 [==============================] - 0s 3ms/step - loss: 0.1980 - accuracy: 0.9218 - val_loss: 1.9655 - val_accuracy: 0.6094
Epoch 39/50
103/103 [==============================] - 0s 3ms/step - loss: 0.1841 - accuracy: 0.9335 - val_loss: 2.0923 - val_accuracy: 0.6172
Epoch 40/50
103/103 [==============================] - 0s 3ms/step - loss: 0.2185 - accuracy: 0.9267 - val_loss: 2.2261 - val_accuracy: 0.5977
Epoch 41/50
103/103 [==============================] - 0s 3ms/step - loss: 0.1308 - accuracy: 0.9570 - val_loss: 2.3560 - val_accuracy: 0.6289
Epoch 42/50
103/103 [==============================] - 0s 3ms/step - loss: 0.0938 - accuracy: 0.9785 - val_loss: 2.3621 - val_accuracy: 0.5977
Epoch 43/50
103/103 [==============================] - 0s 3ms/step - loss: 0.1035 - accuracy: 0.9629 - val_loss: 2.7461 - val_accuracy: 0.5859
Epoch 44/50
103/103 [==============================] - 0s 3ms/step - loss: 0.1418 - accuracy: 0.9541 - val_loss: 2.3777 - val_accuracy: 0.6328
Epoch 45/50
103/103 [==============================] - 0s 3ms/step - loss: 0.0961 - accuracy: 0.9658 - val_loss: 2.6022 - val_accuracy: 0.6055
Epoch 46/50
103/103 [==============================] - 0s 3ms/step - loss: 0.0672 - accuracy: 0.9746 - val_loss: 2.5878 - val_accuracy: 0.6133
Epoch 47/50
103/103 [==============================] - 0s 3ms/step - loss: 0.0751 - accuracy: 0.9775 - val_loss: 2.5179 - val_accuracy: 0.6055
Epoch 48/50
103/103 [==============================] - 0s 3ms/step - loss: 0.1291 - accuracy: 0.9521 - val_loss: 2.3628 - val_accuracy: 0.6328
Epoch 49/50
103/103 [==============================] - 0s 3ms/step - loss: 0.0695 - accuracy: 0.9746 - val_loss: 2.6980 - val_accuracy: 0.6172
Epoch 50/50
103/103 [==============================] - 0s 3ms/step - loss: 0.0392 - accuracy: 0.9873 - val_loss: 2.8444 - val_accuracy: 0.6328
10/10 [==============================] - 0s 2ms/step - loss: 3.1516 - accuracy: 0.6281
テストセットの損失: 3.1516
テストセットの正解率: 0.6281
40/40 [==============================] - 0s 2ms/step
10/10 [==============================] - 0s 2ms/step
正解率(train): 0.915
正解率(test): 0.628

まとめ

・ワインの品質をニューラルネットワークで予測するプログラムを書いてみた。
・実行結果はビミョーだった。。

0
0
1

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?