結論
次の恒等式が成り立つ:
- 3次元
$$
\int d^3x (x^2+y^2)^2 = 8 \int d^3x\ x^2 y^2,
$$ - 4次元
$$
\int d^4x (x_1^2+x_2^2+x_3^2)^2 = 15 \int d^4x\ x_1^2 x_2^2.
$$
説明
左辺と右辺の積分をそれぞれ極座標で書き下し比較すれば上述の恒等式が確認できる.
確かめたい読者のために極座標と直交座標の変換,ヤコビアン,変数の範囲を示しておく:
- 3次元
$$
x = r \sin \theta \cos \phi,\
y = r \sin \theta \sin \phi, \
z = r \cos \theta,
$$
$$
d^3x = r^2 dr d\Omega = r^2 dr \sin \theta d\theta d \phi,
$$
$$
0\leq r \leq R,\ 0 \leq \theta \leq \pi,\ 0 \leq \phi \leq 2\pi.
$$ - 4次元
$$
x_1 = r \sin \theta \sin \phi \cos \psi,\
x_2 = r \sin \theta \sin \phi \sin \psi,
$$
$$
x_3 = r \sin \theta \cos \phi,\
x_4 = r \cos \theta,
$$
$$
d^4x = r^3 dr d\Omega = r^3 dr \sin^2 \theta d\theta \sin \phi d \phi d\psi,
$$
$$
0\leq r \leq R,\ 0 \leq \theta \leq \pi,\ 0 \leq \phi \leq \pi,\ 0 \leq \psi \leq 2\pi.
$$
詳細
4次元の具体的な計算を以下に示す:
$$
\int d^4x (x_1^2 + x_2^2 +x_3^2)^2 = \int r^3 \cdot r^4 dr \int_0^\pi \sin^2 \theta \cdot \sin^4 \theta d \theta \int_0^\pi \sin \phi d\phi \int_0^{2\pi} d\psi
$$
角度積分が$\dfrac{5\pi^2}{4}$を与える.一方,
$$
\int d^4x\ x_1^2 x_2^2 = \int r^3 \cdot r^4 dr \int_0^\pi \sin^2 \theta \cdot \sin^4 \theta d \theta \int_0^\pi \sin \phi \cdot \sin^4 \phi d \phi \int_0^{2\pi} \cos^2 \phi \sin^2 \psi d\psi
$$
こちらの角度積分は$\dfrac{\pi^2}{12}$を与える.比をとれば$15$という因子が現れる.3次元の場合も全く同様にして確かめられる.
まとめ
同様の方法で様々な形の積分を"等方的な場合に限り"変形できる.
あとがき
なぜこんなものを?:論文を読んでいて「何この変形」ってなって試行錯誤してたら出てきた恒等式.
役立った?:その論文の式を再現できたから役だったといえる.