1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

宇宙背景X線放射(CXB)をフラックス範囲を指定してpythonで計算する方法

Posted at

背景

宇宙背景X線放射(CXB)を推定する場合に、トータルの明るさはいくつかを知りたいだけではなくて、撮像観測した場合は、撮像により検出された明るい点源は除いた場合に、どのくらいが空間分解せずに残っているか?を推定する必要がある。

ここでは、https://iopscience.iop.org/article/10.1086/374335 に従って、soft (1-2 keV) と hard (2-10 keV) のそれぞれをpythonで計算する方法を紹介する。

ソースコード

コードを読めばわかる人は、calc_cxbのColab を参照ください。

#!/bin/evn python 

import matplotlib.pyplot as plt
import numpy as np

# THE RESOLVED FRACTION OF THE COSMIC X-RAY BACKGROUND A. Moretti, 
# The Astrophysical Journal, Volume 588, Number 2 (2003)
# https://iopscience.iop.org/article/10.1086/374335

smax = 1e-1 # maxinum of flux range (erg cm^-2 c^-1)
smin = 1e-17 # minimum of flux range (erg cm^-2 c^-1)
n = int(1e5) # number of grid in flux 
fcut = 5e-14 # user-specified maxinum flux (erg cm^-2 c^-1)

def calc_cxb(s,fcut=5e-14, ftotal_walker=2.18e-11, plot=True, soft=True):

	if soft: # 1-2 keV
		print("..... soft X-ray 1-2 keV is chosen")
		a1=1.82; a2=0.6; s0=1.48e-14; ns=6150
		foutname="soft"
	else: # hard 2-10 keV 
		print("..... hard X-ray 2-10 keV is chosen")
		a1=1.57; a2=0.44; s0=4.5e-15; ns=5300
		foutname="hard"


	n_larger_s = ns * 2.0e-15 ** a1 / (s**a1 + s0**(a1-a2)*s**a2) # Moretti et al. 2013, eq(2)

	if plot:
		F = plt.figure(figsize=(6,6))
		ax = plt.subplot(1,1,1)
		plt.plot(s, n_larger_s, ".", label="test")
		plt.xscale('log')
		plt.ylabel(r"$N(>S)/deg^2$")
		plt.xlabel(r"$S (erg cm^{-2} s^{-1})$")
		plt.yscale('log')
		plt.savefig(foutname + "_ns.png")
		plt.show()

	diff_n_larger_s = np.abs(np.diff(n_larger_s))
	diff_s = np.diff(s)
	div_ns = np.abs(diff_n_larger_s/diff_s)

	s_lastcut = s[:-1]
	totalflux = np.sum(div_ns*s_lastcut*diff_s) # Moretti et al. 2013, eq(4)

	fluxcut = np.where(s > fcut)[0][:-1]
	particalflux = np.sum(div_ns[fluxcut]*s_lastcut[fluxcut]*diff_s[fluxcut])
	fdiff = totalflux - particalflux 
	fcxb = ftotal_walker - particalflux # Walker et al. 2016, eq(1)

	print("totalflux    = ", "%.4e"%totalflux, " [erg cm^-2 c^-1]", " from ", "%.4e"%smin, " to ",  "%.4e"%smax)
	print("particalflux = ", "%.4e"%particalflux, " [erg cm^-2 c^-1]", " from ", "%.4e"%fcut, " to ",  "%.4e"%smax)
	print("fdiff        = totalflux - particalflux     = ", "%.4e"%fdiff, " [erg cm^-2 c^-1]", " from ", "%.4e"%smin, " to ",  "%.4e"%fcut)	
	print("fcxb(2-10keV)= ftotal_walker - particalflux = ", "%.4e"%fcxb, " [erg cm^-2 c^-1]")

	if plot:
		F = plt.figure(figsize=(6,6))
		ax = plt.subplot(1,1,1)
		plt.plot(s[:-1], div_ns, ".", label="test")
		plt.xscale('log')
		plt.ylabel(r"$dN/dS/deg^2$")
		plt.xlabel(r"$S (erg cm^{-2} s^{-1})$")
		plt.yscale('log')
		plt.savefig(foutname + "_nsdiff.png")		
		plt.show()

	return s, n_larger_s, diff_n_larger_s, div_ns, diff_s

#s = np.linspace(sexcl,smax,n)
s = np.logspace(np.log10(smin),np.log10(smax),n)

# plot soft band
s, n_larger_s, diff_n_larger_s, div_ns, diff_s = calc_cxb(s,fcut=fcut)
# plot hard band
s, n_larger_s, diff_n_larger_s, div_ns, diff_s = calc_cxb(s,fcut=fcut,soft=False)

実行結果

1-2 keV

スクリーンショット 2020-11-04 11.23.26.png

2-10 keV

スクリーンショット 2020-11-04 11.23.34.png

計算方法

さすがにリニアだとメモリが足りずに計算できないので、s(erg cm^-2 s^-1)空間のログで、積分はただの長方形近似を用いた。

スクリーンショット 2020-11-04 11.29.23.png

この関数は、n_larger_s = ns * 2.0e-15 ** a1 / (sa1 + s0(a1-a2)*s**a2) で計算している。

スクリーンショット 2020-11-04 11.29.31.png

この積分は、totalflux = np.sum(div_nss_lastcutdiff_s) で計算している。

fcxb = ftotal_walker - particalflux # Walker et al. 2016, eq(1) の部分はおまけで、この論文の 2-10 keV のCXBの推定をしており、それに準じた計算を出しておいた。

1
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?