Qiita Teams that are logged in
You are not logged in to any team

Log in to Qiita Team
Community
OrganizationEventAdvent CalendarQiitadon (β)
Service
Qiita JobsQiita ZineQiita Blog
2
Help us understand the problem. What are the problem?

More than 3 years have passed since last update.

posted at

updated at

U-netを短く書く

こちらでベタ書きしていてやばいと思ったので書きました。
https://www.kaggle.com/keegil/keras-u-net-starter-lb-0-277

準備部分

layers
from keras.layers.convolutional import Conv2D

def Conv2D16(s):
    return Conv2D(16, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (s)

def _Conv2D(s,size,dsize=3):
    return Conv2D(size, (dsize, dsize), activation='elu', kernel_initializer='he_normal', padding='same')(s)

def CDCP(s,size,dsize=3,droprate=0.1,withpooling=True):
    c =_Conv2D(s,size,dsize)
    c = Dropout(droprate)(c)
    c =_Conv2D(c,size,dsize)
    if(withpooling):
        p=MaxPooling2D((2, 2)) (c)
        return p,c
    else:
        return c

def Ulayer(s,t,size,dsize=3,droprate=0.2):
    u = Conv2DTranspose(size, (2, 2), strides=(2, 2), padding='same') (s)
    u = concatenate([u, t])
    c = _Conv2D(u,size, dsize)
    c = Dropout(droprate)(c)
    return _Conv2D(c,size,dsize)

ネットワークを作る部分
下の方はやりすぎ感がある。

gennet
IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS=1280,720,3

inputs = Input((IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS))

def genUnet1(inputs):
    s = Lambda(lambda x: x / 255) (inputs)
    a0,c0=CDCP(s,16,3,0.1)
    a1,c1=CDCP(a0,32,3,0.1)
    a2,c2=CDCP(a1,64,3,0.2)
    a3,c3=CDCP(a2,128,3,0.2)
    a4=CDCP(a3,256,3,0.2,False)

    a5=Ulayer(a4,c3,128)
    a6=Ulayer(a5,c2,64)
    a7=Ulayer(a6,c1,32)
    a8=Ulayer(a7,c0,16)
    a9=Conv2D(1, (1, 1), activation='sigmoid')(a8)
    return Model(inputs=[inputs],outputs=[a9])

import math
def genUnet(inputs,dropoutrate):
    width,height,channelnum=[a.value for a in inputs.shape]
    s = Lambda(lambda x: x / 255) (inputs)

    ls=[[s]]
    Nmax=int(math.log2(min(width,height)))
    startwidth=4

    for i in range(Nmax-startwidth):
        ni=i+startwidth
        if(i==0):
            ls.append(CDCP(ls[-1]   ,2**ni, channelnum,dropoutrate))
        else:
            ls.append(CDCP(ls[-1][0],2**ni, channelnum,dropoutrate))

    ls.append(CDCP(ls[-1][0],2**Nmax, channelnum,dropoutrate,False))

    for i in range(Nmax-1,startwidth-1,-1):
        ls.append(Ulayer(ls[-1][0],ls[i-startwidth][1], 2**i, channelnum,dropoutrate,False))

    ls.append(Conv2D(1, (1, 1), activation='sigmoid')(ls[-1]))
    return Model(inputs=[inputs],outputs=[ls[-1]])

コンパイル

compile
model=genUnet(inputs)
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=[mean_iou])
model.summary()
fit

earlystopper = EarlyStopping(patience=5, verbose=1)
checkpointer = ModelCheckpoint('model-unet.h5', verbose=1, save_best_only=True)
results = model.fit(X_train, Y_train, validation_split=0.1, batch_size=16, epochs=50, 
                    callbacks=[earlystopper, checkpointer])

結果
https://gist.github.com/xiangze/d42d7c8e5ae967fba388d5c639365f3a

ちゃんとできてるっぽい。

Why not register and get more from Qiita?
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away
2
Help us understand the problem. What are the problem?