Help us understand the problem. What is going on with this article?

numpyでの人工的データ生成

More than 5 years have passed since last update.

csv形式での出力、scatterplotができます。
c_,r_演算子を使っています。

作れる人工的データ
円環とその組み合わせ(円環の中の円環(2D),xor的パターン(2D),絡み合った円環(3D))
ツイストされ絡み合った円環(3D)
任意の次元の球殻(球殻の中の球殻)
Lorenzアトラクタ
Rosslerアトラクタ

参考
Marsaglia's method
http://stackoverflow.com/questions/15880367/python-uniform-distribution-of-points-on-4-dimensional-sphere

gendata.py
# -*- coding: utf-8 -*-
"""
Created on Wed May 07 21:17:21 2014

@author: xiangze
"""

import csv
import numpy as np
#from matplotlib.pyplot import *
import matplotlib.pyplot as plt

PI=np.pi
PI2=2*PI

def gencircle(rc,rr=0.1,offset=[0,0],num=100,label=0):
    c=[]
    for i in range(num):
        r=rc+np.random.uniform(-rr,rr,1)
        th=np.random.uniform(0,PI2,1)
        c.append([r*np.sin(th)+offset[0],r*np.cos(th)+offset[1]])
    return np.c_[np.array(c).reshape(num,2),np.repeat(label,num)]


def genring(rc,rr=0.1,offset=[0,0,0],num=100,label=0,normaldir='x'):
    if(normaldir=='x'):
        a=gencircle(rc,rr,[offset[1],offset[2]],num,label)    
        return np.c_[np.repeat(offset[0],num),a[:,0],a[:,1],a[:,2]]
    elif(normaldir=='y'):
        a=gencircle(rc,rr,[offset[0],offset[2]],num,label)    
        return np.c_[a[:,0],np.repeat(offset[1],num),a[:,1],a[:,2]]
    else:
        a=gencircle(rc,rr,[offset[0],offset[1]],num,label)    
        return np.c_[a[:,0],a[:,1],np.repeat(offset[2],num),a[:,2]]

def gentwistedring0(rc=[1,0.3],rr=0.1,offset=[0,0,0],num=100,label=0,twistratio=3.0,phase=0):
    c=[]
    for i in range(num):
        r=rc[0]+np.random.uniform(-rr,rr,1)
        th=np.random.uniform(0,PI2,1)
        c1=[r*np.sin(th)+offset[0],r*np.cos(th)+offset[1],offset[2]]
        c2=[rc[1]*np.sin(th*twistratio+phase)*np.sin(th) , rc[1]*np.sin(th*twistratio+phase)*np.cos(th) ,rc[1]*np.cos(th*twistratio+phase)]

        c.append([c1[i]+c2[i] for i in range(len(c1))])
    return np.c_[np.array(c).reshape(num,3),np.repeat(label,num)]


def gentwistedring(rc=[1,0.3],rr=0.1,offset=[0,0,0],num=100,label=0,normaldir='x',twistratio=5.0,phase=0):
    a=gentwistedring0(rc,rr,offset,num,label,twistratio,phase)    
    if(normaldir=='x'):
        return a
    elif(normaldir=='y'):
        return np.c_[a[:,1],a[:,2],a[:0],a[:3]]
    else:
        return np.c_[a[:,2],a[:,0],a[:1],a[:3]]

#http://stackoverflow.com/questions/15880367/python-uniform-distribution-of-points-on-4-dimensional-sphere
#Marsaglia's method
def gensphere(rc,rr=0.1,offset=[0,0,0],num=100,label=0,dim=3):
    normal_deviates = np.random.normal(size=(dim, num))
    r=rc+np.random.uniform(-rr,rr,1)
    r = np.sqrt((normal_deviates**2).sum(axis=0))*r
    p =normal_deviates/r
    return np.c_[np.array(zip(*p)).reshape(num,dim),np.repeat(label,num)]

def gensphere0(rc,rr=0.1,offset=[0,0,0],num=100,label=0):
    c=[]
    n=int(np.sqrt(num))
    for ph in np.random.uniform(-PI,PI,n):
        for th in np.random.uniform(0,PI2,n):
            r=rc+np.random.uniform(-rr,rr,1)
            c.append([r*np.sin(th)*np.sin(ph)+offset[0],r*np.cos(th)*np.sin(ph)+offset[1],r*np.cos(ph)+offset[2]])
    return np.c_[np.array(c).reshape(num,3),np.repeat(label,num)]

def gensphere1(rc,rr=0.1,offset=[0,0,0],num=100,label=0):
    c=[]
    n=int(np.sqrt(num))
    for ph in np.random.uniform(-PI,PI,n):
        p=0
        if(p>=n):
            break
        else:
            m=int(np.abs(np.sin(ph)*n))
            if(m!=0):
                for th in np.random.uniform(0,PI2,m):
                    r=rc+np.random.uniform(-rr,rr,1)
                    c.append((r*np.sin(th)*np.sin(ph)+offset[0],r*np.cos(th)*np.sin(ph)+offset[1],r*np.cos(ph)+offset[2]))
                p=p+m
    l=len(c)
    return np.c_[np.array(c).reshape(l,3),np.repeat(label,l)]

def genlorenz(init=[0,0.1,0],offset=[0,0,0],rr=0.,num=100,p=10,r=28,b=2.66,label=0,dt=0.01):
    cc=[]
    x=init[0]
    y=init[1]
    z=init[2]
    for t in range(num):
        cc.append([x,y,z])
        x=x+dt*(-p*x+p*y)      +np.random.uniform(-rr,rr,1)
        y=y+dt*(-x*z+r*x-y)    +np.random.uniform(-rr,rr,1)
        z=z+dt*( x*y-b*z)      +np.random.uniform(-rr,rr,1)
    return np.c_[np.array(cc).reshape(num,3),np.repeat(label,num)]

def genrossler(init=[0,5,0],offset=[0,0,0],num=100,a=0.2,b=0.2,c=5.7,label=0,dt=0.05):
    cc=[]
    x=init[0]
    y=init[1]
    z=init[2]
    for t in range(num):
        cc.append([x,y,z])
        x=x+dt*(-y-z)
        y=y+dt*( x+a*y)
        z=z+dt*( b+z*(x-c))
    return np.c_[np.array(cc).reshape(num,3),np.repeat(label,num)]


def cshow2(data):
    cc=zip(*data)
    plt.scatter(cc[0],cc[1],c=cc[2])
    plt.draw()
    plt.show()

def cshow3(data):
    from mpl_toolkits.mplot3d import Axes3D
    fig=plt.figure()
    ax = Axes3D(fig)
    cc=zip(*data)
    ax.scatter(cc[0],cc[1],cc[2],c=cc[3])
    plt.draw()
    plt.show()

def test(data,dump=False,fname="test.csv"):
    if(data.shape[1]==3):
        cshow2(data)
    else:
        cshow3(data)

    if(dump):
        np.savetxt(fname,data,delimiter=",")

if __name__=="__main__":
    num=200
    circles=np.vstack([gencircle(1,0.1,num=num,label=0),gencircle(1,0.1,[-2,2],num=num,label=1)])
    test(circles)

#circle in circle
    cinc=np.r_[gencircle(1,0.1,num=num,label=0),gencircle(2,0.1,num=num,label=1)]
    test(cinc)

#XOR-like pattern
    xor0=np.r_[gencircle(0.5,num=num/2,offset=[0,0],label=0),gencircle(0.5,offset=[1,1],label=0)]
    xor1=np.r_[gencircle(0.5,num=num/2,offset=[0,1],label=1),gencircle(0.5,offset=[1,0],label=1)]
    xor=np.r_[xor0,xor1]    
    test(xor)

#3D ring
    rings=np.r_[genring(1,0.1,num=num,offset=[0,0,0],label=0,normaldir='x'),\
                genring(1,0.1,num=num,offset=[0,0,1],label=1,normaldir='y')]
    test(rings)   

    num=400
#sphere in sphere    
    sins=np.r_[gensphere(1,num=num,label=0),gensphere(2,num=num,label=1)]
    test(sins)

#twisted rings
    test(np.vstack([gentwistedring(num=num,label=0),gentwistedring(num=num,label=1,phase=PI)]))

    num=1000
    rossler=genrossler(num=num,dt=0.1)
    test(rossler)

    lorenz=genlorenz(num=num,dt=0.05)
    test(lorenz)

circles.png
cinc.png
xor_like.png
rings.png
sphere_in_sphere.png

twistedrings.png
rossler.png

lorenz.png

xiangze
https://github.com/xiangze
http://xiangze.hatenablog.com/
Why not register and get more from Qiita?
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away
Comments
No comments
Sign up for free and join this conversation.
If you already have a Qiita account
Why do not you register as a user and use Qiita more conveniently?
You need to log in to use this function. Qiita can be used more conveniently after logging in.
You seem to be reading articles frequently this month. Qiita can be used more conveniently after logging in.
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away
ユーザーは見つかりませんでした