0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

お題は不問!Qiita Engineer Festa 2023で記事投稿!

ViTのKとVをPyramid Poolingで計算量削減【P2T】

Last updated at Posted at 2023-06-23

原論文
P2T: Pyramid Pooling Transformer for Scene Understanding
https://arxiv.org/abs/2106.12011

関連研究

Vison Transformerの解説
https://qiita.com/wakanomi/items/55bba80338615c7cce73

PVTの解説
https://qiita.com/wakayama_90b/items/77c4c6857210b73e24b8

CNN+ViTモデルの傾向【サーベイ】
https://qiita.com/wakayama_90b/items/96bf5d32b09cb0041c39

結論

ViTの計算量削減のためにキーとバリューをPyramid Poolingと畳み込みを使用してダウンサンプリングする.

概要

ViTの問題点として,計算量が膨大である問題点がある.それを解決するために,P2Tは,キーとバリューをダウンサンプリングする.ダウンサンプリングにはPyramid Poolingと畳み込みを使用する.

モデル構造

モデル構造として,4ステージの階層型モデル構造を採用している.最初の処理はに$7 \times 7$の畳み込みを採用して特徴抽出を行う.これは,局所的な認識の補助と特徴量のダウンサンプリングで計算量の削減効果がある.

スクリーンショット 2023-06-22 17.17.12.png

スクリーンショット 2023-06-22 17.17.40.png

Pyramid Pooling Transformer

Pyramid Pooling Transformerの構造としてViTのTransformer encoderと同様な構造を持つ.
左の図から空間認識のSA,チャンネル方向認識のMLPを交互に認識する構造である.
右の図では,KとVのダウンサンプリングのためにをPyramid Pooling+畳み込みをする.
KとVをダウンサンプリングすることで計算量の削減する.

Pyramid Poolingは以下のurlで解説します.
https://qiita.com/wakayama_90b/items/c023816fc8481b4f9fbb

2023-06-22 17.17.27.png

まとめ

今回はViTのKとVをPyramid Poolingで計算量削減【P2T】について解説した.
KとVのダウンサンプリングで計算量を削減する.ダウンサンプリング方法は,様々あるのでその1種にPyramid Pooling+convがある.

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?