0. はじめに
前回、OpenCVの圧縮処理でデータ転送量を軽量化する実験をしました。
今回、やっとimage_transport
の使い方がわかったので、試して行きたいと思います。
実験で使用した画像や実験環境は、Part1で使用したものと同じです。
1. 結論
image_transportに関しても、内部処理でJPEG圧縮やPNG圧縮をかけているだけだったので、Part1の結果とあまり変わりませんでした。RosTopicの/image_converter/compressed
が圧縮画像です。rqtの機能でTopicの中を確認すると、formatの欄でJPEG圧縮がかかっていることがわかります。
/image_converter
のTopicは、無圧縮の画像になります。
圧縮なし
Part1と同じく、約90~92MB/sとなっています。
image_transport(JPEG圧縮)あり
約19MB/sとなり、Part1で試したJPEG圧縮とほぼ変わりない結果となりました。
JPEG圧縮なので、転送先で画像が若干劣化します。
また、Pythonが対応してないという情報がありましたが、最終的にはPythonでの実行方法も見つけました
(がんばってC++で書いて確認したのに)。
2. 使い方
ここからは、Publisher側とSubscriber側でのimage_transport
の使い方について記載します。
メモ書き程度なので、Part1で説明している環境構築やDockerの実行環境などは割愛しています。
2.1. Publisher側
Publisher側のノードを作成するために、パッケージを作成します。
$ cd /work/catkin_ws
$ source /opt/ros/noetic/setup.bash
$ source devel/setup.bash
$ cd src
$ catkin_create_pkg imgpub_test roscpp std_msgs sensor_msgs cv_bridge image_transport compressed_image_transport
$ cd imgpub_test/src
$ touch imgpub_test_node.cpp
上記のコマンドを打つと、下記のようなディレクトリ構造になると思います。
.
├── build
├── devel
└── src
├── CMakeLists.txt
└── imgpub_test
├── CMakeLists.txt
├── include
│ └── imgpub_test
├── package.xml
└── src
└── imgpub_test_node.cpp
imgpub_test_node.cpp
の中を記載します。
#include <iostream>
#include <chrono>
#include "ros/ros.h"
#include "image_transport/image_transport.h"
#include <cv_bridge/cv_bridge.h>
#include "sensor_msgs/image_encodings.h"
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
class ImagePublisher
{
ros::NodeHandle nh;
ros::Publisher image_pub;
public:
ImagePublisher()
{
image_pub = nh.advertise<sensor_msgs::Image>("img_color", 1);
}
~ImagePublisher(){}
void publish_img()
{
cv::Mat img = cv::imread("/data/DSC_0040.JPG");
cv_bridge::CvImage cv_img;
try{
cv_img = cv_bridge::CvImage(std_msgs::Header(), "bgr8", img);
}
catch (cv_bridge::Exception& e){
ROS_ERROR("cv_bridge exception: %s", e.what());
return;
}
image_pub.publish(cv_img.toImageMsg());
}
};
int main(int argc, char** argv)
{
ros::init(argc, argv, "img_pub");
ImagePublisher img_pub;
while(ros::ok())
{
auto start = std::chrono::system_clock::now();
img_pub.publish_img();
auto end = std::chrono::system_clock::now();
auto msec = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
std::cout << msec << " milli sec \n";
}
return 0;
}
imgpub_test/CMakeLists.txt
の中身を編集します。
cmake_minimum_required(VERSION 3.0.2)
project(imgpub_test)
## Compile as C++11, supported in ROS Kinetic and newer
# add_compile_options(-std=c++11)
## Find catkin macros and libraries
## if COMPONENTS list like find_package(catkin REQUIRED COMPONENTS xyz)
## is used, also find other catkin packages
+ find_package(catkin REQUIRED COMPONENTS
+ compressed_image_transport
+ cv_bridge
+ image_transport
+ roscpp
+ sensor_msgs
+ std_msgs
+ )
## System dependencies are found with CMake's conventions
+ find_package(Boost REQUIRED)
+ find_package(OpenCV REQUIRED)
## Uncomment this if the package has a setup.py. This macro ensures
## modules and global scripts declared therein get installed
## See http://ros.org/doc/api/catkin/html/user_guide/setup_dot_py.html
# catkin_python_setup()
################################################
## Declare ROS messages, services and actions ##
################################################
## To declare and build messages, services or actions from within this
## package, follow these steps:
## * Let MSG_DEP_SET be the set of packages whose message types you use in
## your messages/services/actions (e.g. std_msgs, actionlib_msgs, ...).
## * In the file package.xml:
## * add a build_depend tag for "message_generation"
## * add a build_depend and a exec_depend tag for each package in MSG_DEP_SET
## * If MSG_DEP_SET isn't empty the following dependency has been pulled in
## but can be declared for certainty nonetheless:
## * add a exec_depend tag for "message_runtime"
## * In this file (CMakeLists.txt):
## * add "message_generation" and every package in MSG_DEP_SET to
## find_package(catkin REQUIRED COMPONENTS ...)
## * add "message_runtime" and every package in MSG_DEP_SET to
## catkin_package(CATKIN_DEPENDS ...)
## * uncomment the add_*_files sections below as needed
## and list every .msg/.srv/.action file to be processed
## * uncomment the generate_messages entry below
## * add every package in MSG_DEP_SET to generate_messages(DEPENDENCIES ...)
## Generate messages in the 'msg' folder
# add_message_files(
# FILES
# Message1.msg
# Message2.msg
# )
## Generate services in the 'srv' folder
# add_service_files(
# FILES
# Service1.srv
# Service2.srv
# )
## Generate actions in the 'action' folder
# add_action_files(
# FILES
# Action1.action
# Action2.action
# )
## Generate added messages and services with any dependencies listed here
# generate_messages(
# DEPENDENCIES
# sensor_msgs# std_msgs
# )
################################################
## Declare ROS dynamic reconfigure parameters ##
################################################
## To declare and build dynamic reconfigure parameters within this
## package, follow these steps:
## * In the file package.xml:
## * add a build_depend and a exec_depend tag for "dynamic_reconfigure"
## * In this file (CMakeLists.txt):
## * add "dynamic_reconfigure" to
## find_package(catkin REQUIRED COMPONENTS ...)
## * uncomment the "generate_dynamic_reconfigure_options" section below
## and list every .cfg file to be processed
## Generate dynamic reconfigure parameters in the 'cfg' folder
# generate_dynamic_reconfigure_options(
# cfg/DynReconf1.cfg
# cfg/DynReconf2.cfg
# )
###################################
## catkin specific configuration ##
###################################
## The catkin_package macro generates cmake config files for your package
## Declare things to be passed to dependent projects
## INCLUDE_DIRS: uncomment this if your package contains header files
## LIBRARIES: libraries you create in this project that dependent projects also need
## CATKIN_DEPENDS: catkin_packages dependent projects also need
## DEPENDS: system dependencies of this project that dependent projects also need
catkin_package(
# INCLUDE_DIRS include
# LIBRARIES imgpub_test
# CATKIN_DEPENDS compressed_image_transport cv_bridge image_transport roscpp sensor_msgs std_msgs
# DEPENDS system_lib
)
###########
## Build ##
###########
## Specify additional locations of header files
## Your package locations should be listed before other locations
include_directories(
# include
${catkin_INCLUDE_DIRS}
)
## Declare a C++ library
# add_library(${PROJECT_NAME}
# src/${PROJECT_NAME}/imgpub_test.cpp
# )
## Add cmake target dependencies of the library
## as an example, code may need to be generated before libraries
## either from message generation or dynamic reconfigure
# add_dependencies(${PROJECT_NAME} ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS})
## Declare a C++ executable
## With catkin_make all packages are built within a single CMake context
## The recommended prefix ensures that target names across packages don't collide
+ add_executable(${PROJECT_NAME}_node src/imgpub_test_node.cpp)
## Rename C++ executable without prefix
## The above recommended prefix causes long target names, the following renames the
## target back to the shorter version for ease of user use
## e.g. "rosrun someones_pkg node" instead of "rosrun someones_pkg someones_pkg_node"
# set_target_properties(${PROJECT_NAME}_node PROPERTIES OUTPUT_NAME node PREFIX "")
## Add cmake target dependencies of the executable
## same as for the library above
# add_dependencies(${PROJECT_NAME}_node ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS})
## Specify libraries to link a library or executable target against
+ target_link_libraries(${PROJECT_NAME}_node
+ ${catkin_LIBRARIES}
+ )
#############
## Install ##
#############
# all install targets should use catkin DESTINATION variables
# See http://ros.org/doc/api/catkin/html/adv_user_guide/variables.html
## Mark executable scripts (Python etc.) for installation
## in contrast to setup.py, you can choose the destination
# catkin_install_python(PROGRAMS
# scripts/my_python_script
# DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
# )
## Mark executables for installation
## See http://docs.ros.org/melodic/api/catkin/html/howto/format1/building_executables.html
# install(TARGETS ${PROJECT_NAME}_node
# RUNTIME DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
# )
## Mark libraries for installation
## See http://docs.ros.org/melodic/api/catkin/html/howto/format1/building_libraries.html
# install(TARGETS ${PROJECT_NAME}
# ARCHIVE DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION}
# LIBRARY DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION}
# RUNTIME DESTINATION ${CATKIN_GLOBAL_BIN_DESTINATION}
# )
## Mark cpp header files for installation
# install(DIRECTORY include/${PROJECT_NAME}/
# DESTINATION ${CATKIN_PACKAGE_INCLUDE_DESTINATION}
# FILES_MATCHING PATTERN "*.h"
# PATTERN ".svn" EXCLUDE
# )
## Mark other files for installation (e.g. launch and bag files, etc.)
# install(FILES
# # myfile1
# # myfile2
# DESTINATION ${CATKIN_PACKAGE_SHARE_DESTINATION}
# )
#############
## Testing ##
#############
## Add gtest based cpp test target and link libraries
# catkin_add_gtest(${PROJECT_NAME}-test test/test_imgpub_test.cpp)
# if(TARGET ${PROJECT_NAME}-test)
# target_link_libraries(${PROJECT_NAME}-test ${PROJECT_NAME})
# endif()
## Add folders to be run by python nosetests
# catkin_add_nosetests(test)
ワークスペースの上位まで戻って、makeします。
$ cd /work/catkin_ws
$ catkin_make
####
#### Running command: "make cmake_check_build_system" in "/work/catkin_ws/build"
####
####
#### Running command: "make -j20 -l20" in "/work/catkin_ws/build"
####
[100%] Built target imgpub_test_node
rosrunで実行すると、画像がPublishされます。
$ byobu
$ source /opt/ros/noetic/setup.bash
$ source devel/setup.bash
$ export ROS_IP=192.168.10.107
$ roscore
# F2キーで新しいターミナルを開く
$ source /opt/ros/noetic/setup.bash
$ source devel/setup.bash
$ export ROS_IP=192.168.10.107
$ rosrun imgpub_test imgpub_test_node
2.1. Subscriber側
Subscriber側も同様に、パッケージを作成して、コードを記載して、makeします。
$ cd /work/catkin_ws
$ source /opt/ros/noetic/setup.bash
$ source devel/setup.bash
$ cd src
$ catkin_create_pkg imgsub_test roscpp std_msgs sensor_msgs cv_bridge image_transport compressed_image_transport
$ cd imgsub_test/src
$ touch imgsub_test_node.cpp
#include <iostream>
#include <chrono>
#include "ros/ros.h"
#include "image_transport/image_transport.h"
#include <cv_bridge/cv_bridge.h>
#include "sensor_msgs/image_encodings.h"
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
void imageCallback(const sensor_msgs::CompressedImageConstPtr& msg)
{
try
{
cv::Mat image = cv::imdecode(cv::Mat(msg->data), 1);//convert compressed image data to cv::Mat
cv::Mat src_img = cv::imread("/data/DSC_0040.JPG");
cv::Mat imgf1, imgf2;
image.convertTo(imgf1, CV_32F);
src_img.convertTo(imgf2, CV_32F);
auto val = cv::sum(cv::abs(imgf1 - imgf2));
std::cout << "sum = " << val << std::endl;
cv::imshow("view", image);
cv::waitKey(10);
}
catch (cv_bridge::Exception& e)
{
ROS_ERROR("Could not convert to image!");
}
}
int main(int argc, char **argv)
{
ros::init(argc, argv, "image_listener");
ros::NodeHandle nh;
cv::namedWindow("view");
cv::startWindowThread();
ros::Subscriber sub = nh.subscribe("/img_converter/compressed", 1, imageCallback);
ros::spin();
cv::destroyWindow("view");
}
CMakeLists.txt
の編集はPublisher側と同じなので割愛
$ cd /work/catkin_ws
$ catkin_make
$ source /opt/ros/noetic/setup.bash
$ source ./devel/setup.bash
$ export ROS_MASTER_URI=http://192.168.10.107:11311 # Publisher側のIP
$ export ROS_IP=192.168.10.103 # Subscriber側のIP
$ rosrun imgsub_test imgsub_test_node
参考
compressedimage関係
Qiita記事
その他