1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

表皮深さ

以下のマクスウェル方程式

\nabla\cdot\mathbf{D}\left(t,x\right)	=	\rho\left(t,\mathbf{x}\right)
\nabla\times\mathbf{E}\left(t,x\right)+\frac{\mathrm{\partial\mathbf{B}\left(t,x\right)}}{\partial t}	=	0\\
\nabla\times\mathbf{H}\left(t,\mathbf{x}\right)-\frac{\mathrm{\partial\mathbf{D}\left(t,x\right)}}{\partial t}	=	\mathbf{j}\left(t,\mathbf{x}\right)

導体中に電荷が存在せず、電場は存在するが電束が存在しないと仮定すると

\nabla\cdot\mathbf{D}	=	0\\
\mathbf{D}=\varepsilon\mathbf{E}	=	0\\
 \mathbf{E\neq}0

より$\varepsilon=0$
となる。式(2)の回転を取ると

\nabla\times\nabla\times\mathbf{E}	=	-\mu_{0}\frac{\partial}{\partial t}\left(\nabla\times\mathbf{H}\right)\\
	=	-\mu_{0}\frac{\partial}{\partial t}\mathbf{j}\\
	=	-\mu_{0}\frac{\partial}{\partial t}\left(\sigma\mathbf{\mathbf{E}}\right)\\
	=	-\mu_{0}\sigma\frac{\partial}{\partial t}\mathbf{\mathbf{E}}

ここで、定理

\left(\nabla\times\nabla\times\mathbf{A}\right)=\nabla\left(\nabla\cdot\mathbf{A}\right)-\Delta\mathbf{A}

を用いると

\nabla\left(\nabla\cdot\mathbf{E}\right)-\Delta\mathbf{E}	=	-\mu_{0}\sigma\frac{\partial}{\partial t}\mathbf{\mathbf{E}}
-\Delta\mathbf{E}+\mu_{0}\sigma\frac{\partial}{\partial t}\mathbf{\mathbf{E}}	=	0

ここで、導体中(z方向)に向かって進む波を考え

\mathbf{E}	=	E_{0}\exp\left(i\left(\omega t-kz\right)\right)

と置くと、

-k^{2}E+i\omega\mu_{0}\sigma E	=	0
k	=	\sqrt{i\omega\mu_{0}\sigma}

ここで定理

\sqrt{i}=\pm\frac{1+i}{\sqrt{2}}

より

k	=	\pm\frac{\sqrt{\omega\mu_{0}\sigma}+\sqrt{\omega\mu_{0}\sigma}i}{\sqrt{2}}\\
	=	\pm\left(\sqrt{\frac{\omega\mu_{0}\sigma}\\{2}}+\sqrt{\frac{\omega\mu_{0}\sigma}{2}}i\right)

上式を()式に代入すると

\mathbf{E}	=	E_{0}\exp\left(i\left(\omega t-kz\right)\right)\\
	=	E_{0}\exp\left(i\left(\omega t\mp\left(\sqrt{\frac{\omega\mu_{0}\sigma}\\{2}}+\sqrt{\frac{\omega\mu_{0}\sigma}{2}}i\right)z\right)\right)\\
	=	E_{0}\exp\left(i\omega t\right)\exp\left(\mp\sqrt{\frac{\omega\mu_{0}\sigma}{2}}z\right)\exp\left(\pm i\sqrt{\frac{\omega\mu_{0}\sigma}{2}}z\right)\\
 z=\pm z

を仮定すると

 \mathbf{E}	=	E_{0}\exp\left(i\omega t\right)\exp\left(-\sqrt{\frac{\omega\mu_{0}\sigma}{2}}z\right)\exp\left(i\sqrt{\frac{\omega\mu_{0}\sigma}{2}}z\right)\\

上式は、距離$z$に依存して電場が減衰することを示している。

\mathbf{E}=\frac{E_{0}}{\exp\left(1\right)}

を満たす$z$を表皮深さ$\delta$と定義すると、

\delta	\equiv	\sqrt{\frac{2}{\omega\mu_{0}\sigma}}

となる。

1
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?